The brain-specific miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 domain is implicated in several aspects of brain development and function, particularly in fine-tuning the dendritic outgrowth and spine remodelling of hippocampal neurons. Whether it might influence behaviour and memory-related processes has not yet been explored at the whole organism level. We previously reported that constitutive deletion of the miR-379/miR-410 gene cluster affects metabolic adaptation in neonatal mice. Here, we examined the role of this cluster in adult brain functions by subjecting mice with the constitutive deletion to a battery of behavioural and cognitive tests. We found that the lack of miR-379/miR-410 expression is associated with abnormal emotional responses, as demonstrated by increased anxiety-related behaviour in unfamiliar environments. In contrast, spontaneous exploration, general locomotion, mood levels and sociability remained unaltered. Surprisingly, miR-379/miR-410-deficient mice also showed normal learning and spatial (or contextual) memory abilities in hippocampus-dependent tasks involving neuronal plasticity. Taken together, the imprinted miR-379/miR-410 gene cluster thus emerges as a novel regulator of the two main post-natal physiological processes previously associated with imprinted, protein-coding genes: behaviour and energy homeostasis.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/hmg/ddv510 | DOI Listing |
Hum Mol Genet
February 2016
Laboratoire de Biologie Moléculaire Eucaryote, Université de Toulouse, UPS and CNRS, LBME, F-31000 Toulouse, France,
The brain-specific miR-379/miR-410 gene cluster at the imprinted Dlk1-Dio3 domain is implicated in several aspects of brain development and function, particularly in fine-tuning the dendritic outgrowth and spine remodelling of hippocampal neurons. Whether it might influence behaviour and memory-related processes has not yet been explored at the whole organism level. We previously reported that constitutive deletion of the miR-379/miR-410 gene cluster affects metabolic adaptation in neonatal mice.
View Article and Find Full Text PDFEMBO J
October 2014
Laboratoire de Biologie Moléculaire Eucaryote, UPS Université de Toulouse, Toulouse, France CNRS LBME, UMR5099, Toulouse, France
In mammals, birth entails complex metabolic adjustments essential for neonatal survival. Using a mouse knockout model, we identify crucial biological roles for the miR-379/miR-410 cluster within the imprinted Dlk1-Dio3 region during this metabolic transition. The miR-379/miR-410 locus, also named C14MC in humans, is the largest known placental mammal-specific miRNA cluster, whose 39 miRNA genes are expressed only from the maternal allele.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!