Temporal genetic stability of Stegomyia aegypti (= Aedes aegypti) populations.

Med Vet Entomol

Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, U.S.A.

Published: June 2016

The mosquito Stegomyia aegypti (= Aedes aegypti) (Diptera: Culicidae) is the primary vector of viruses that cause yellow fever, dengue and Chikungunya fever. In the absence of effective vaccines, the reduction of these diseases relies on vector control strategies. The success of these strategies is tightly linked to the population dynamics of target populations. In the present study, 14 collections from St. aegypti populations separated by periods of 1-13 years were analysed to determine their temporal genetic stability. Although temporal structure is discernible in most populations, the degree of temporal differentiation is dependent on the population and does not obscure the geographic structure of the various populations. The results suggest that performing detailed studies in the years prior to and after population reduction- or modification-based control interventions at each target field site may be useful in assessing the probability of success.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856540PMC
http://dx.doi.org/10.1111/mve.12153DOI Listing

Publication Analysis

Top Keywords

temporal genetic
8
genetic stability
8
stegomyia aegypti
8
aegypti aedes
8
aedes aegypti
8
aegypti populations
8
aegypti
5
populations
5
temporal
4
stability stegomyia
4

Similar Publications

Large vertebrate genomes duplicate by activating tens of thousands of DNA replication origins, irregularly spaced along the genome. The spatial and temporal regulation of the replication process is not yet fully understood. To investigate the DNA replication dynamics, we developed a methodology called RepliCorr, which uses the spatial correlation between replication patterns observed on stretched single-molecule DNA obtained by either DNA combing or high-throughput optical mapping.

View Article and Find Full Text PDF

This study explores directional selection on physical and psychosocial phenotypes in Eastern Eurasian populations, utilizing a dataset of 1245 ancient genomes. By analyzing polygenic scores (PGS) for traits including height, educational attainment (EA), IQ, autism, schizophrenia, and others, we observed significant temporal trends spanning the Holocene era. The results suggest positive selection for cognitive-related traits such as IQ, EA and autism spectrum disorder (ASD), alongside negative selection for anxiety and depression.

View Article and Find Full Text PDF

GEFormer: a Genomic Prediction Method of Genotype-Environment Interaction in Maize by Integrating Gating Mechanism MLP and Linear Attention Mechanism.

Mol Plant

January 2025

National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China; Hubei Key Laboratory of Agricultural Bioinformatics, Huazhong Agricultural University, Wuhan 430070, China; College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

The integration of genotypic and environmental data can enhance the prediction accuracy of field traits of crops. The existing genomic prediction methods fail to consider the environmental factors and do not consider the real growing environment of crops, resulting in low genomic prediction accuracy. In this work, we propose a genotype-environment interaction genomic prediction method in maize, called GEFormer, based on integrating the gating mechanism MLP and linear attention mechanism.

View Article and Find Full Text PDF

Global meta-analysis shows action is needed to halt genetic diversity loss.

Nature

January 2025

International Union for the Conservation of Nature (IUCN) Conservation Genetics Specialist Group (CGSG), .

Mitigating loss of genetic diversity is a major global biodiversity challenge. To meet recent international commitments to maintain genetic diversity within species, we need to understand relationships between threats, conservation management and genetic diversity change. Here we conduct a global analysis of genetic diversity change via meta-analysis of all available temporal measures of genetic diversity from more than three decades of research.

View Article and Find Full Text PDF

Time-resolved compositional and dynamics analysis of biofilm maturation and dispersal via solid-state NMR spectroscopy.

NPJ Biofilms Microbiomes

January 2025

Institute of Drug Discovery Technology, Ningbo University, Ningbo, 315211, Zhejiang, China.

Dispersal plays a crucial role in the development and ecology of biofilms. While extensive studies focused on elucidating the molecular mechanisms governing this process, few have characterized the associated temporal changes in composition and structure. Here, we employed solid-state nuclear magnetic resonance (NMR) techniques to achieve time-resolved characterization of Bacillus subtilis biofilms over a 5-day period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!