Spin transport in undoped InGaAs/AlGaAs multiple quantum well studied via spin photocurrent excited by circularly polarized light.

Nanoscale Res Lett

Key Laboratory of Semiconductor Materials Science, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, People's Republic of China.

Published: December 2016

The spin diffusion and drift at different excitation wavelengths and different temperatures have been studied in undoped InGaAs/AlGaAs multiple quantum well (MQW). The spin polarization was created by optical spin orientation using circularly polarized light, and the reciprocal spin Hall effect was employed to measure the spin polarization current. We measured the ratio of the spin diffusion coefficient to the mobility of spin-polarized carriers. From the wavelength dependence of the ratio, we found that the spin diffusion and drift of holes became as important as electrons in this undoped MQW, and the ratio for light holes was much smaller than that for heavy holes at room temperature. From the temperature dependence of the ratio, the correction factors for the common Einstein relationship for spin-polarized electrons and heavy holes were firstly obtained to be 93 and 286, respectively.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705080PMC
http://dx.doi.org/10.1186/s11671-015-1218-3DOI Listing

Publication Analysis

Top Keywords

spin diffusion
12
spin
9
undoped ingaas/algaas
8
ingaas/algaas multiple
8
multiple quantum
8
quantum well
8
circularly polarized
8
polarized light
8
diffusion drift
8
spin polarization
8

Similar Publications

Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.

View Article and Find Full Text PDF
Article Synopsis
  • Dynamic nuclear polarization (DNP) and quantum technologies utilize the spin transfer in electron-nuclear quantum systems, but larger couplings like hyperfine interactions can hinder these processes.
  • The Schrieffer-Wolff transformation is applied to analyze a system of two electrons and two nuclei, focusing on polarization-transfer methods, including an energy-conserving electron-nuclear four-spin flip-flop.
  • The study connects magnetic resonance and quantum information, demonstrating a model where all nuclear spins can aid in hyperpolarization without being impeded by a spin diffusion barrier in DNP.
View Article and Find Full Text PDF

Spin Drag Mechanism of Giant Thermal Magnetoresistance.

Phys Rev Lett

December 2024

Department of Physics, University of Washington, Seattle, Washington 98195, USA.

We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.

View Article and Find Full Text PDF

Purpose: This study compares the diagnostic efficacy of non-contrast abbreviated MRI protocols with Gadoxetic acid-enhanced abbreviated MRI for detecting colorectal liver metastasis (CRLM), focusing on lesion characterization and surveillance.

Methods: Ninety-four patients, including 55 with pathologically verified CRLM, were enrolled, totaling 422 lesions (287 metastatic, 135 benign). Two independent readers assessed three MRI protocols per patient: Protocol 1 included non-contrast sequences (T2-weighted turbo spin-echo, T1-weighted Dixon, diffusion-weighted imaging (DWI), and ADC mapping).

View Article and Find Full Text PDF

Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!