The spin diffusion and drift at different excitation wavelengths and different temperatures have been studied in undoped InGaAs/AlGaAs multiple quantum well (MQW). The spin polarization was created by optical spin orientation using circularly polarized light, and the reciprocal spin Hall effect was employed to measure the spin polarization current. We measured the ratio of the spin diffusion coefficient to the mobility of spin-polarized carriers. From the wavelength dependence of the ratio, we found that the spin diffusion and drift of holes became as important as electrons in this undoped MQW, and the ratio for light holes was much smaller than that for heavy holes at room temperature. From the temperature dependence of the ratio, the correction factors for the common Einstein relationship for spin-polarized electrons and heavy holes were firstly obtained to be 93 and 286, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705080 | PMC |
http://dx.doi.org/10.1186/s11671-015-1218-3 | DOI Listing |
Phys Rev Lett
December 2024
Max Planck Institute for the Physics of Complex Systems, Nöthnitzer Straße 38, 01187 Dresden, Germany.
Superdiffusion is surprisingly easily observed even in systems without the integrability underpinning this phenomenon. Indeed, the classical Heisenberg chain-one of the simplest many-body systems, and firmly believed to be nonintegrable-evinces a long-lived regime of anomalous, superdiffusive spin dynamics at finite temperature. Similarly, superdiffusion persists for long timescales, even at high temperature, for small perturbations around a related integrable model.
View Article and Find Full Text PDFSci Adv
January 2025
Institute of Molecular Physical Science, ETH Zurich, 8093 Zurich, Switzerland.
Phys Rev Lett
December 2024
Department of Physics, University of Washington, Seattle, Washington 98195, USA.
We study hydrodynamic thermal transport in high-mobility two-dimensional electron systems placed in an in-plane magnetic field and identify a new mechanism of thermal magnetotransport. This mechanism is caused by drag between the electron populations with opposite spin polarization, which arises in the presence of a hydrodynamic flow of heat. In high mobility systems, spin drag results in strong thermal magnetoresistance, which becomes of the order of 100% at relatively small spin polarization of the electron liquid.
View Article and Find Full Text PDFInsights Imaging
January 2025
Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
Purpose: This study compares the diagnostic efficacy of non-contrast abbreviated MRI protocols with Gadoxetic acid-enhanced abbreviated MRI for detecting colorectal liver metastasis (CRLM), focusing on lesion characterization and surveillance.
Methods: Ninety-four patients, including 55 with pathologically verified CRLM, were enrolled, totaling 422 lesions (287 metastatic, 135 benign). Two independent readers assessed three MRI protocols per patient: Protocol 1 included non-contrast sequences (T2-weighted turbo spin-echo, T1-weighted Dixon, diffusion-weighted imaging (DWI), and ADC mapping).
Adv Mater
December 2024
Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
Magnetoplumbites are one of the most broadly studied families of hexagonal ferrites, typically with high magnetic ordering temperatures, making them excellent candidates for permanent magnets. However, magnetic frustration is rarely observed in magnetoplumbites. Herein, the discovery, synthesis, and characterization of the first Mn-based magnetoplumbite, as well as the first magnetoplumbite involving pnictogens (Sb), ASbMnO (A = K or Rb) are reported.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!