Introduction: Facial pain is often debilitating and can be characterized by a sharp, stabbing, burning, aching, and dysesthetic sensation. Specifically, trigeminal neuropathic pain (TNP), anesthesia dolorosa, and persistent idiopathic facial pain (PIFP) are difficult diseases to treat, can be quite debilitating and an effective, enduring treatment remains elusive.
Methods: We retrospectively reviewed our early experience with stimulation involving the trigeminal and sphenopalatine ganglion stimulation for TNP, anesthesia dolorosa, and PIFP between 2010-2014 to assess the feasibility of implanting at these ganglionic sites. Seven patients received either trigeminal and/or sphenopalatine ganglion stimulation with or without peripheral nerve stimulation, having failed multiple alternative modalities of treatment. The treatments were tailored on the physical location of pain to ensure regional coverage with the stimulation.
Results: Fluoroscopy or frameless stereotaxy was utilized to place the sphenopalatine and/or trigeminal ganglion stimulator. All patients were initially trialed before implantation. Trial leads implanted in the pterygopalatine fossa near the sphenopalatine ganglion were implanted via transpterygoid (lateral-medial, infrazygomatic) approach. Trial leads were implanted in the trigeminal ganglion via percutaneous Hartel approach, all of which resulted in masseter contraction. Patients who developed clinically significant pain improvement underwent implantation. The trigeminal ganglion stimulation permanent implants involved placing a grid electrode over Meckel's cave via subtemporal craniotomy, which offered a greater ability to stimulate subdivisions of the trigeminal nerve, without muscular (V3) side effects. Two of the seven overall patients did not respond well to the trial and were not implanted. Five patients reported pain relief with up to 24-month follow-up. Several of the sphenopalatine ganglion stimulation patients had pain relief without any paresthesias. There were no electrode migrations or post-surgical complications.
Conclusions: Refractory facial pain may respond positively to ganglionic forms of stimulation. It appears safe and durable to implant electrodes in the pterygopalatine fossa via a lateral transpterygoid approach. Also, implantation of an electrode grid overlying Meckel's cave appears to be a feasible alternative to the Hartel approach. Further investigation is needed to evaluate the usefulness of these approaches for various facial pain conditions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00701-015-2695-y | DOI Listing |
Clin Auton Res
December 2024
Facultad de Medicina, Universidad Autónoma de Sinaloa, C. Sauces, s/n, 80019, Culiacán, SIN, Mexico.
Purpose: The parasympathetic effects of the sphenopalatine ganglion (SPG) on the cerebral vasculature provide a compelling rationale for its therapeutic application in cerebrovascular ischemia. In recent years, attempts have been made to stimulate the SPG to achieve beneficial effects on cerebral circulation.
Methods: This review synthesizes the available publications on SPG stimulation.
J Cell Mol Med
December 2024
"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.
Pheochromocytomas and paragangliomas (PPGLs) are rare neuroendocrine tumours that originate from chromaffin cells and occur in the adrenal medulla and in the sympathetic or parasympathetic ganglia. Nearly 70% of PPGLs result from germline or somatic mutations in a single driver gene. The aim of this study was to characterize the genetic background and clinical characteristics related to genetic profile of patients with PPGLs from Romania.
View Article and Find Full Text PDFJ Headache Pain
December 2024
Department of Anesthesiology, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
J Physiol
November 2024
Faculty of Science, Medicine and Health, University of Wollongong, Wollongong, New South Wales, Australia.
Nature
November 2024
Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
The autonomic nervous system orchestrates the functions of the brain and body through the sympathetic and parasympathetic pathways. However, our understanding of the autonomic system, especially the sympathetic system, at the cellular and molecular levels is severely limited. Here we show topological representations of individual visceral organs in the major abdominal sympathetic ganglion complex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!