AI Article Synopsis

Article Abstract

Superhydrophobic coatings on the aluminum alloy were fabricated by intensive nanosecond pulsed laser treatment and chemical surface hydrophobization, which are chemically stable in contact with 0.5 M NaCl aqueous solutions and mechanically durable against stresses arising in the repetitive freezing/thawing of brine. The statistics of the crystallization of ensembles of sessile supercooled droplets deposited on above superhydrophobic coatings indicate considerable anti-icing properties. The comparative analysis of crystallization statistics of deionized water and of brine at a temperature of -20 °C allows detecting a striking increase in freezing delay times for the latter case with freezing delay for brine droplets reaching more than 6 hours. We explain the observed phenomenon based on the structure of the double electric layer in the vicinity of the hydrophobic surface and the solution/air interface and on the concept of structure making/breaking ions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5cp06988bDOI Listing

Publication Analysis

Top Keywords

freezing delay
12
anti-icing properties
8
increase freezing
8
delay times
8
brine droplets
8
superhydrophobic coatings
8
properties superhydrophobic
4
superhydrophobic surface
4
surface salt
4
salt environment
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!