Background: The synthetic biology technology which enhances the specificity and efficacy of treatment is a novel try in biomedical therapy during recent years. A high frequency of somatic mutations was shown in the human telomerase reverse transcriptase (hTERT) promoter in bladder cancer, indicating that a mutational hTERT promoter might be a tumor-specific element for bladder cancer therapy. In our study, we aimed to construct a synthetic combination module driven by a super artificial hTERT promoter and to investigate its influence on the malignant phenotypes of bladder cancer.
Methods: The dual luciferase assay system was used to verify the driven efficiency and tumor-specificity of the artificial hTERT promoter and to confirm the relationship between ETS-1 and the driven efficiency of the artificial hTERT promoter. CCK-8 assay and MTT assay were used to test the effects of the Bax-Anti Bcl2 combination module driven by the artificial hTERT promoter on cell proliferation. Simultaneously, the cell apoptosis was detected by the caspase 3ELISA assay and the flow cytometry analysis after transfection. The results of CCK-8 assay and MTT assay were analyzed by ANOVA. The independent samples t-test was used to analyze other data.
Results: We demonstrated that the artificial hTERT promoter had a higher driven efficiency which might be regulated by transcription factor ETS-1 in bladder cancer cells, compared with wild-type hTERT promoter. Meanwhile, the artificial hTERT promoter showed a strong tumor-specific effect. The cell proliferation inhibition and apoptosis induction were observed in artificial hTERT promoter- Bax-Anti Bcl2 combination module -transfected bladder cancer 5637 and T24 cells, but not in the module -transfected normal human fibroblasts.
Conclusion: This module offers us a useful synthetic biology platform to inhibit the malignant phenotypes of bladder cancer in a more specific and effective way.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4705585 | PMC |
http://dx.doi.org/10.1186/s13046-015-0279-6 | DOI Listing |
Mol Med Rep
February 2025
Biomedical Section, Hull-York Medical School, University of Hull, Hull, HU6 7RX, UK.
Tissue factor (TF) possesses additional physiological functions beyond initiating the coagulation cascade. Cellular signals initiated by cellular TF or on contact with TF‑containing microvesicles, contribute to wound healing through regulating a number of cellular properties and functions. TF regulates the cell cycle checkpoints, however the underlying signalling mechanisms have not been determined.
View Article and Find Full Text PDFGenes (Basel)
October 2024
U-Monitor Lda, 4200-135 Porto, Portugal.
Background: The screening of TERT promoter () mutations is essential in cancer research and diagnostics, due to its prevalence in tumours associated with low self-renewal rates. TERTmonitor is a diagnosis kit primarily designed for real-time qPCR qualitative detection of -124C>T and -146C>T mutations, which are highly prevalent in several malignancies, particularly in bladder carcinoma.
Objective: This study aims to investigate TERTmonitor performance in droplet digital PCR (ddPCR) in urine samples from bladder cancer patients.
Acta Neuropathol Commun
November 2024
Department of Neuropathology, GHU Paris-Psychiatrie et Neurosciences, Sainte-Anne Hospital, 1, Rue Cabanis, 75014, Paris, France.
Diffuse pediatric-type high-grade gliomas (pedHGG), H3- and IDH-wildtype, encompass three main DNA-methylation-based subtypes: pedHGG-MYCN, pedHGG-RTK1A/B/C, and pedHGG-RTK2A/B. Since their first description in 2017 tumors of pedHGG-RTK2A/B have not been comprehensively characterized and clinical correlates remain elusive. In a recent series of pedHGG with a Gliomatosis cerebri (GC) growth pattern, an increased incidence of pedHGG-RTK2A/B (n = 18) was observed.
View Article and Find Full Text PDFMol Biol Rep
October 2024
Department of Biology, School of Science, Shiraz University, Shiraz, 71467-13565, Iran.
Adv Exp Med Biol
September 2024
Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!