The synthesis of few-layer tungsten diselenide (WSe2) via chemical vapor deposition typically results in highly non-uniform thickness due to nucleation initiated growth of triangular domains. In this work, few-layer p-type WSe2 with wafer-scale thickness and electrical uniformity is synthesized through direct selenization of thin films of e-beam evaporated W on SiO2 substrates. Raman maps over a large area of the substrate show small variations in the main peak position, indicating excellent thickness uniformity across several square centimeters. Additionally, field-effect transistors fabricated from the wafer-scale WSe2 films demonstrate uniform electrical performance across the substrate. The intrinsic field-effect mobility of the films at a carrier concentration of 3 × 10(12) cm(-2) is 10 cm(2) V(-1) s(-1). The unprecedented uniformity of the WSe2 on wafer-scale substrates provides a substantial step towards producing manufacturable materials that are compatible with conventional semiconductor fabrication processes.

Download full-text PDF

Source
http://dx.doi.org/10.1039/c5nr06180fDOI Listing

Publication Analysis

Top Keywords

field-effect transistors
8
few-layer p-type
8
p-type wse2
8
wse2 wafer-scale
8
wse2
5
transistors based
4
wafer-scale
4
based wafer-scale
4
wafer-scale highly
4
highly uniform
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!