Organic electronics have been developed according to an orthodox doctrine advocating "all-printed'', "all-organic'' and "ultra-low-cost'' primarily targeting various e-paper applications. In order to harvest from the great opportunities afforded with organic electronics potentially operating as communication and sensor outposts within existing and future complex communication infrastructures, high-quality computing and communication protocols must be integrated with the organic electronics. Here, we debate and scrutinize the twinning of the signal-processing capability of traditional integrated silicon chips with organic electronics and sensors, and to use our body as a natural local network with our bare hand as the browser of the physical world. The resulting platform provides a body network, i.e., a personalized web, composed of e-label sensors, bioelectronics, and mobile devices that together make it possible to monitor and record both our ambience and health-status parameters, supported by the ubiquitous mobile network and the resources of the "cloud".
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/adma.201504301 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Centre for Organic Photonics & Electronics, School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia.
The power conversion efficiency (PCE) of perovskite solar cells is sensitive to their method of fabrication as well as the combination of materials in the perovskite layer. Air knife-assisted blade coating enables good quality perovskite films to be formed but the device efficiencies still tend to lag behind those fabricated using spin-coated perovskite layers. Herein we report the use of three 2,3,4,5,6-pentafluorophenylethylammonium halides (FEAX, where X = I, Br or Cl) as additives in nitrogen knife-assisted blade-coated methylammonium lead iodide (MAPbI) perovskite solar cells.
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Design of 3D-Printable Polymers Based on Regional Resources, Just Transition Center, Martin Luther University Halle-Wittenberg, 06099 Halle, Germany.
Lithium batteries, essential for consumer electronics, transportation and the energy sector, still require further improvement in performance, safety, and sustainability. Traditonal organic solvent-based electrolytes, widely used in current systems, pose significant safety risks and restrict the development of next generation devices. Vitrimers are materials with unique physical and chemical properties, which offer a promising alternative to overcome these limitations, finally reaching processability and recyclability of solid electrolytes.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States.
Fabricating organic semiconducting materials into large-scale, well-organized architectures is critical for building high-performance molecular electronics. While graphene nanoribbons (GNRs) hold enormous promise for various device applications, their assembly into a well-structured monolayer or multilayer architecture poses a substantial challenge. Here, we report the preparation of length-defined monodisperse GNRs via the integrated iterative binomial synthesis (IIBS) strategy and their self-assembly into submicrometer architectures with long-range order, uniform orientation, as well as regular layers.
View Article and Find Full Text PDFACS Agric Sci Technol
January 2025
Laboratory of Organic Electronics, Department of Science and Technology, Linköping University, SE-60174 Norrköping, Sweden.
Plant infiltration techniques, particularly agroinfiltration, have transformed plant science and biotechnology by enabling transient gene expression for genetic engineering of plants or genomic studies. Recently, the use of infiltration has expanded to introduce nanomaterials and polymers in plants to enable nonnative functionalities. Despite its wide use, the impact of the infiltration process on plant physiology needs to be better understood.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Key Laboratory for Organic Electronics and Information Displays (KLOEID), Jiangsu Key Laboratory of Smart Biomaterials and Theranostic Technology, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023 China. Electronic address:
The excessive extracellular matrix (ECM) in solid tumors significantly inhibits the deep penetration and homogeneous distribution of nanodrugs, which greatly reduces the therapeutic efficacy. In the present work, an injectable polyelectrolyte hydrogel (CD@IPH) containing collagenase and doxorubicin-loaded polyacrylic acid@polyaniline nanoparticles (DOX@NP) were developed for improved photothermal and chemotherapy. The collagenase is released quickly from the polyelectrolyte hydrogel in the first 12 h, effectively degrading ECM and enhancing the deep penetration and evenly distribution of DOX@NP in tumor tissues.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!