A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Synthesis and Characterization of ¹⁸F-Interleukin-8 Using a Cell-Free Translation System and 4-¹⁸F-Fluoro-L-Proline. | LitMetric

Unlabelled: Macromolecules such as proteins are attracting increasing interest for molecular imaging. We previously proposed a novel strategy for preparing macromolecules labeled with a PET radionuclide, (11)C, using a cell-free translation system with (11)C-methionine. However, macromolecules tend to exhibit slower kinetics, thus requiring a longer scanning time. Here, we expand our strategy using (18)F, which has a longer half-life, with the cell-free translation system with 4-(18)F-fluoro-L-proline ((18)F-FPro). We evaluated (18)F-interleukin-8 ((18)F-IL-8) produced by this method in vitro and in vivo to provide a proof of concept of our strategy.

Methods: We tested some fluorinated amino acids to be incorporated into a protein. Trans-(18)F-FPro was radiolabeled from the corresponding precursor. (18)F-IL-8 was produced using the cell-free translation system with trans-(18)F-FPro instead of natural L-proline with incubation at 37°C for 120 min. An in vitro binding assay of (18)F-IL-8 was performed using IL-8 receptor-expressing cells. After intravenous administration of (18)F-IL-8, in vivo PET imaging of IL-8 receptor-expressing xenograft-bearing mice was performed using a small-animal PET system.

Results: FPro was identified as an amino acid incorporated into the protein. (18)F-IL-8 was successfully prepared using the cell-free translation system and trans-(18)F-FPro with the radiochemical yield of 1.5% (decay-corrected) based on trans-(18)F-FPro. In vitro binding assays of (18)F-IL-8 demonstrated its binding to IL-8 receptor. In vivo PET imaging demonstrated that (18)F-IL-8 clearly accumulated in IL-8 receptor-expressing xenografts in mice, unlike trans-(18)F-FPro.

Conclusion: (18)F-IL-8 produced by this method binds to IL-8 receptors in vitro, and (18)F-IL-8 PET clearly visualizes its target receptor-expressing xenograft in vivo. Therefore, this technique might be useful for labeling macromolecules and performing preclinical evaluations of proteins of interest in vitro and in vivo.

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.115.162602DOI Listing

Publication Analysis

Top Keywords

cell-free translation
20
translation system
20
18f-il-8 produced
12
il-8 receptor-expressing
12
18f-il-8
9
produced method
8
vitro vivo
8
incorporated protein
8
system trans-18f-fpro
8
vitro binding
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!