Hydrogen plays an essential role during the in situ assembly of tailored catalytic materials, and serves as key ingredient in multifarious chemical reactions promoted by these catalysts. Despite intensive debate for several decades, the existence and nature of hydrogen-involved mechanisms - such as hydrogen-spillover, surface migration - have not been unambiguously proven and elucidated up to date. Here, Pt-Ga alloy formation is used as a probe reaction to study the behavior and atomic transport of H and Ga, starting from Pt nanoparticles on hydrotalcite-derived Mg(Ga)(Al)Ox supports. In situ XANES spectroscopy, time-resolved TAP kinetic experiments, HAADF-STEM imaging and EDX mapping are combined to probe Pt, Ga and H in a series of H2 reduction experiments up to 650 °C. Mg(Ga)(Al)Ox by itself dissociates hydrogen, but these dissociated hydrogen species do not induce significant reduction of Ga(3+) cations in the support. Only in the presence of Pt, partial reduction of Ga(3+) into Ga(δ+) is observed, suggesting that different reaction mechanisms dominate for Pt- and Mg(Ga)(Al)Ox-dissociated hydrogen species. This partial reduction of Ga(3+) is made possible by Pt-dissociated H species which spillover onto non-reducible Mg(Al)Ox or partially reducible Mg(Ga)(Al)Ox and undergo long-range transport over the support surface. Moderately mobile Ga(δ+)Ox migrates towards Pt clusters, where Ga(δ+) is only fully reduced to Ga(0) on condition of immediate stabilization inside Pt-Ga alloyed nanoparticles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c5cp07344h | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264000, China.
Constructing multifunctional phosphors grounded in the intricate relationship between energy level structures and luminescent properties has captivated researchers in the luminescent material field. Herein, using the embedded cluster multiconfigurational ab initio method, the energy levels of Bi in the SrLaGaO host at different geometries were calculated, which results in the establishment of complete configurational coordinate curves, yielding breathing mode vibrational frequencies and equilibrium bond lengths for all excited states. These curves supply deep insight into the luminescence properties of Bi-doped phosphors and highlight the impact of ions in the second coordination sphere on luminescence.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Stage Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, China.
Under NaHCO stress, exogenous 24-epibrassinolide (EBR) markedly alleviated Na accumulation in cucumber plants, thereby decreasing the Na/K, Na/Mg, and Na/Ca ratios. This mitigation was accompanied by elevated concentrations of K, Ca, and Mg, as well as enhanced expression of the and genes. In addition, the activities of plasma membrane H-ATPase, vesicular membrane H-ATPase, and vesicular membrane H-PPase were significantly increased, contributing to the maintenance of ionic balance in cucumber plants.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory of Photobiology and Molecular Diagnostics, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdańsk, Poland.
Staphylococcus aureus (S. aureus) can survive inside nonprofessional phagocytes such as keratinocytes, enabling it to evade antibiotics and cause recurrent infections once treatment stops. New antibacterial strategies to eliminate intracellular, multidrug-resistant bacteria are needed.
View Article and Find Full Text PDFPlant Physiol Biochem
January 2025
School of Engineering, Anhui Agricultural University, Hefei, 230036, China. Electronic address:
In this research, we sought to investigate how high temperature, salinity, and CO affect endogenous phytohormones, photosynthesis, and redox homeostasis in Caragana korshinskii Kom (C. korshinskii) leaves, as well as to comprehensively evaluate the plant's physiological response to multiple environmental stressors. The elevated temperature (e[T]), elevated Na (e[Na]), and elevated temperature and Na (e[T-Na]) treatments increased abscisic acid (ABA) and reduced zeatin-riboside (ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA).
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Agronomy Department, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt.
Drought stress significantly impacts wheat productivity, but plant growth regulators may help mitigate these effects. This study examined the influence of gibberellic acid (GA3) and abscisic acid (ABA) on wheat (Triticum aestivum L., CV: Giza 171) growth and yield under different water regimes.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!