Lead accumulation reduces photosynthesis in the lead hyper-accumulator Salvinia minima Baker by affecting the cell membrane and inducing stomatal closure.

Aquat Toxicol

Centro de Investigación Científica de Yucatán, Calle 43 No. 130, Col. Chuburná de Hidalgo, 97200 Mérida, Yucatán, Mexico. Electronic address:

Published: February 2016

Salvinia minima Baker accumulates a fair amount of lead in its tissues; however, no studies have investigated the effect of lead on the physiological processes that affect photosynthesis in this species. The objective of the present study was to assess whether the high amounts of lead accumulated by S. minima can affect its photosynthetic apparatus. The physiological changes in the roots and leaves in response to lead accumulation were analyzed. An exposure to 40 μM Pb(NO3)2 for 24 h (first stage) was sufficient to reduce the photosynthetic rate (Pn) by 44%. This reduction in Pn was apparently the result of processes at various levels, including damage to the cell membranes (mainly in roots). Interestingly, although the plants were transferred to fresh medium without lead for an additional 24 h (second stage), Pn not only remained low, but was reduced even further, which was apparently related to stomatal closure, and may have led to reduced CO2 availability. Therefore, it can be concluded that lead exposure first decreases the photosynthetic rate by damaging the root membrane and then induces stomatal closure, resulting in decreased CO2 availability.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2015.12.008DOI Listing

Publication Analysis

Top Keywords

stomatal closure
12
lead
8
lead accumulation
8
salvinia minima
8
minima baker
8
photosynthetic rate
8
co2 availability
8
accumulation reduces
4
reduces photosynthesis
4
photosynthesis lead
4

Similar Publications

Exploring the Role of Carbon Monoxide in Seed Physiology: Implications for Stress Tolerance and Practical Uses.

Int J Mol Sci

December 2024

Department of Plant Physiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland.

Carbon monoxide (CO) is recognized as a signaling molecule in plants, inducing various physiological responses. This article briefly examines the physiological functions of CO in seed biology and seedlings' responses to environmental stresses. The activity of heme oxygenase (HO), the main enzyme responsible for CO synthesis, is a key factor controlling CO levels in plant cells.

View Article and Find Full Text PDF

PME12-mutated plants displayed altered stomatal characteristics and susceptibility to ABA-induced closure. Despite changes in PME activity, the mutant exhibited enhanced thermotolerance. These findings suggest a complex interplay between pectin methylesterification, ABA response, and stomatal function, contributing to plant adaptation to heat stress.

View Article and Find Full Text PDF

Drought conditions severely curtail the ability of plants to accumulate biomass due to the closure of stomata and the decrease of photosynthetic assimilation rate. Additionally, there is a shift in the plant's metabolic processes toward the production of metabolites that offer protection and aid in osmoadaptation, as opposed to those required for development and growth. To limit water loss via non-stomatal transpiration, plants adjust the load and composition of cuticle waxes, which act as an additional barrier.

View Article and Find Full Text PDF

Manipulating stomatal aperture by silencing StSLAC1 affects potato plant-herbivore-parasitoid tritrophic interactions under drought stress.

New Phytol

January 2025

State Key Laboratory of Rice Biology, Ministry of Agricultural and Rural Affairs Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Insect Sciences, Zhejiang University, Hangzhou, 310058, China.

The effects of drought stress on stomatal opening dynamics, plant volatile organic compound (VOC) emissions and plant-insect interactions have been well-documented individually, but how they interact mechanistically remains poorly studied. Here, we studied how drought-triggered stomatal closure affects VOC emission and plant-trophic interactions by combining RNAi silencing, molecular biological and chemical analyses (GC-MS) of a potato-tuber moth-egg parasitoid tritrophic system. Drought stress attenuated stomatal apertures and VOC emissions, which made the potato (Solanum tuberosum L.

View Article and Find Full Text PDF

In this research, we sought to investigate how high temperature, salinity, and CO affect endogenous phytohormones, photosynthesis, and redox homeostasis in Caragana korshinskii Kom (C. korshinskii) leaves, as well as to comprehensively evaluate the plant's physiological response to multiple environmental stressors. The elevated temperature (e[T]), elevated Na (e[Na]), and elevated temperature and Na (e[T-Na]) treatments increased abscisic acid (ABA) and reduced zeatin-riboside (ZR), indole-3-acetic acid (IAA), and gibberellic acid (GA).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!