Detection of Organic Compounds in Water by an Optical Absorbance Method.

Sensors (Basel)

School of Electronics and Computer Engineering, Chonnam National University, 300 Youngbong-dong, Buk-gu, Gwangju 500-757, Korea.

Published: January 2016

This paper proposes an optical method which allows determination of the organic compound concentration in water by measurement of the UV (ultraviolet) absorption at a wavelength of 250 nm~300 nm. The UV absorbance was analyzed by means of a multiple linear regression model for estimation of the total organic carbon contents in water, which showed a close correlation with the UV absorbance, demonstrating a high adjusted coefficient of determination, 0.997. The comparison of the TOC (total organic carbon) concentrations for real samples (tab water, sea, and river) calculated from the UV absorbance spectra, and those measured by a conventional TOC analyzer indicates that the higher the TOC value the better the agreement. This UV absorbance method can be easily configured for real-time monitoring water pollution, and built into a compact system applicable to industry areas.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4732094PMC
http://dx.doi.org/10.3390/s16010061DOI Listing

Publication Analysis

Top Keywords

absorbance method
8
total organic
8
organic carbon
8
water
5
absorbance
5
detection organic
4
organic compounds
4
compounds water
4
water optical
4
optical absorbance
4

Similar Publications

The paper presents the variations of space radiation (primary and secondary galactic cosmic rays (GCR) absorbed dose rate in silicon and flux) measured during the first-ever commercial suborbital flight of the Virgin Galactic (VG) SpaceShipTwo Unity on 29 June 2023. A Portable Dosimeter-Spectrometer Liulin-CNR-VG is used. It is developed in the Space Research and Technology Institute, Bulgarian Academy of Sciences (SRTI-BAS) under a scientific contract with National Research Council of Italy (CNR), Italy.

View Article and Find Full Text PDF

Development of detection system for lead ions in mixture solutions using UV-Vis measurements with peptide immobilized microbeads.

Sci Rep

January 2025

Faculty of Frontiers of Innovative Research in Science and Technology (FIRST), Konan University, Chuo-ku, Kobe, 650-0047, Hyogo, Japan.

Environmental pollution caused by heavy metals are problems worldwide. In particular, pollution and poisoning by lead ions (Pb) continue to be common and serious problems. Hence, there is a need for a widely usable method to easily detect Pb from solutions containing organic materials from environmental water such as seas, ponds, etc.

View Article and Find Full Text PDF

Background: The burden of hospital-acquired infections (HAIs) equates to 3.5 million cases, resulting in more than 90 000 deaths and 2.5 million disability-adjusted life years (DALYs) across Europe.

View Article and Find Full Text PDF

Comparison of complications and surgery outcomes in skin closure methods following cesarean sections.

Arch Gynecol Obstet

January 2025

Department of Obstetrics and Gynecology, Lis Hospital for Women's Health, Tel Aviv Sourasky Medical Center, Tel Aviv University, Tel Aviv, Israel.

Purpose: This study aimed to assess the impact of absorbable subcutaneous staples for skin closure in cesarean delivery (CD) on maternal morbidity.

Methods: A retrospective cohort study was conducted at a single tertiary university-affiliated medical center between January 2011 and April 2022. In 2020, a new technique involving absorbable subcutaneous staples for skin closure in CD was introduced.

View Article and Find Full Text PDF

To develop and evaluate graphene oxide/gelatin/alginate scaffolds for advanced wound therapy capable of mimicking the native extracellular matrix (ECM) and bio-stimulating all specific phases of the wound healing process, from inflammation and proliferation to the remodeling of damaged skin tissue in three dimensions. The scaffolds were engineered as interpenetrating polymeric networks by the crosslinking reaction of gelatin in the presence of alginate and characterized by structural, morphological, mechanical, swelling properties, porosity, adhesion to the skin tissue, wettability, and in vitro simultaneous release of the active agents. Biocompatibility of the scaffolds were evaluated in vitro by MTT test on fibroblasts (MRC5 cells) and in vivo using assay.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!