Achieving an efficient separation of chemically similar Am(3+)/Eu(3+) pair in high level liquid waste treatment is crucial for managing the long-term nuclear waste disposal issues. The use of sophisticated supramolecules in a rigid framework could be the next step toward solving the long-standing problem. Here, we have investigated the possibility of separating Am(3+)/Eu(3+) pair with cucurbit-[5]-uril (CB[5]), a macrocycle from the cucurbit-[n]-uril family, using relativistic density functional theory (DFT) based calculations. We have explored the structures, binding, and energetics of metal-CB[5] complexation processes with and without the presence of counterions. Our study reveals an excellent selectivity of Eu(3+) over Am(3+) with CB[5] (ion exchange free energy, ΔΔGAm/Eu > 10 kcal mol(-1)). Both metals bind with the carbonyl portals via μ(5) coordination arrangement with the further involvement of three external water molecules. The presence of counterions, particularly nitrate, inside the hydrophobic cavity of CB[5], induces a cooperative cation-anion binding, resulting in enhancement of metal binding at the host. The overall binding process is found to be entropy driven resembling the recent experimental observations (Rawat et al. Dalton Trans. 2015, 44, 4246-4258). The optimized structural parameters for Eu(3+)-CB[5] complexes are found to be in excellent agreement with the available experimental information. To rationalize the computed selectivity trend, electronic structures are further scrutinized using energy decomposition analysis (EDA), quantum theory of atom in molecules (QTAIM), Mülliken population analysis (MPA), Nalewajski-Mrojek (NM) bond order, and molecular orbital analyses. Strong electrostatic ion-dipole interaction along with efficient charge transfer between CB[5] and Eu(3+) outweighs the better degree of covalency between CB[5] and Am(3+) leading to superior selectivity of Eu(3+) over Am(3+).

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.inorgchem.5b01627DOI Listing

Publication Analysis

Top Keywords

efficient separation
8
dft based
8
am3+/eu3+ pair
8
presence counterions
8
selectivity eu3+
8
eu3+ am3+
8
cb[5]
5
separation europium
4
europium americium
4
americium cucurbit-[5]-uril
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!