Preferential Protection of Cerebral Autoregulation and Reduction of Hippocampal Necrosis With Norepinephrine After Traumatic Brain Injury in Female Piglets.

Pediatr Crit Care Med

1Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA. 2Department of Pharmacology, University of Pennsylvania, Philadelphia, PA. 3Department of Anesthesiology, Pediatrics, and Neurological Surgery, University of Washington, Seattle, WA.

Published: March 2016

Objectives: Traumatic brain injury contributes to morbidity in children and boys is disproportionately represented. Cerebral autoregulation is impaired after traumatic brain injury, contributing to poor outcome. Cerebral perfusion pressure is often normalized by the use of vasopressors to increase mean arterial pressure. In prior studies, we observed that phenylephrine prevented impairment of autoregulation in female but exacerbated in male piglets after fluid percussion injury. In contrast, dopamine prevented impairment of autoregulation in both sexes after fluid percussion injury, suggesting that pressor choice impacts outcome. The extracellular signal-regulated kinase isoform of mitogen-activated protein kinase produces hemodynamic impairment after fluid percussion injury, but the role of the cytokine interleukin-6 is unknown. We investigated whether norepinephrine sex-dependently protects autoregulation and limits histopathology after fluid percussion injury and the role of extracellular signal-regulated kinase and interleukin-6 in that outcome.

Design: Prospective, randomized animal study.

Setting: University laboratory.

Subjects: Newborn (1-5 d old) pigs.

Interventions: Cerebral perfusion pressure, cerebral blood flow, and pial artery diameter were determined before and after fluid percussion injury in piglets equipped with a closed cranial window and post-treated with norepinephrine. Cerebrospinal fluid extracellular-signal-regulated kinase mitogen-activated protein kinase was determined by enzyme-linked immunosorbent assay.

Measurements And Main Results: Norepinephrine does not protect autoregulation or prevent reduction in cerebral blood flow in male but fully protects autoregulation in female piglets after fluid percussion injury. Papaverine-induced dilation was unchanged by fluid percussion injury and norepinephrine. Norepinephrine increased extracellular signal-regulated kinase mitogen-activated protein kinase up-regulation in male but blocked such up-regulation in female piglets after fluid percussion injury. Norepinephrine aggravated interleukin-6 upregulation in males in an extracellular signal-regulated kinase mitogen-activated protein kinase-dependent mechanism but blocked interleukin-6 up-regulation in females after fluid percussion injury. Norepinephrine augments loss of neurons in CA1 and CA3 hippocampus of male piglets after fluid percussion injury in an extracellular signal-regulated kinase mitogen-activated protein kinase-dependent and interleukin-6-dependent manner but prevents loss of neurons in females after fluid percussion injury.

Conclusion: Norepinephrine protects autoregulation and limits hippocampal neuronal cell necrosis via modulation of extracellular signal-regulated kinase mitogen-activated protein kinase and interleukin-6 after fluid percussion injury in a sex-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779739PMC
http://dx.doi.org/10.1097/PCC.0000000000000603DOI Listing

Publication Analysis

Top Keywords

fluid percussion
48
percussion injury
44
extracellular signal-regulated
24
signal-regulated kinase
24
mitogen-activated protein
24
kinase mitogen-activated
20
piglets fluid
16
protein kinase
16
injury
14
fluid
13

Similar Publications

Traumatic brain injury (TBI) is one of the primary causes of mortality and disability, with arterial blood pressure being an important factor in the clinical management of TBI. Spontaneously hypertensive rats (SHRs), widely used as a model of essential hypertension and vascular dementia, demonstrate dysfunction of the hypothalamic-pituitary-adrenal axis, which may contribute to glucocorticoid-mediated hippocampal damage. The aim of this study was to assess acute post-TBI seizures, delayed mortality, and hippocampal pathology in SHRs and normotensive Sprague Dawley rats (SDRs).

View Article and Find Full Text PDF

: Traumatic brain injury (TBI) occurs after a sudden mechanical force to the skull and represents a significant public health problem. Initial brain trauma triggers secondary pathophysiological processes that induce structural and functional impairment of the central nervous system, even in the regions distant to the lesion site. Later in life, these changes can be manifested as neurodegenerative sequalae that commonly involve proteinopathies, such as transactive DNA-binding protein 43 (TDP-43).

View Article and Find Full Text PDF

Traumatic brain injury (TBI) is one of the major causes of severe neurological disorders and long-term dysfunction in the nervous system. Besides inducing neurodegeneration, TBI alters stem cell activity and neurogenesis within primary neurogenic niches. However, the fate of dividing cells in other brain regions remains unclear despite offering potential targets for therapeutic intervention.

View Article and Find Full Text PDF

Effects of a Serotonin Receptor Peptide on Behavioral Pattern Separation in Sham- vs. Mild Traumatic Brain Injured Rats.

Endocrinol Diabetes Metab J

June 2024

Medical & Research Services, Veterans Affairs New Jersey Healthcare System, East Orange, New Jersey, USA.

Aims: Behavioral pattern separation is a hippocampal-dependent component of episodic memory and a sensitive marker of early cognitive decline. Here we tested whether mild traumatic injury causes loss of pattern separation in the rat and for its prevention by a novel neuroprotective peptide fragment of the human serotonin 2A receptor (SN..

View Article and Find Full Text PDF

Repetitive cortical spreading depolarizations are prolonged early after experimental traumatic brain injury.

Exp Neurol

December 2024

Department of Neurosurgery, University of Cincinnati, Cincinnati, OH 45267, USA; Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH 45267, USA. Electronic address:

Cortical spreading depolarizations (CSDs) are the most common electrophysiological dysfunction following a traumatic brain injury (TBI), and clustered CSDs (≥3 CSDs in 2 h) are associated with poor outcomes 6 months after TBI. While many experimental studies have investigated a single CSD after injury, no known studies have investigated how time after injury affects the characteristics and impact of a CSD cluster. This study sought to determine the characteristics of a cluster of repetitive CSDs when induced at three different time points after moderate experimental TBI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!