Predicting immune responses before vaccination is challenging because of the complexity of the governing parameters. Nevertheless, recent work has shown that B cell receptor (BCR)-antigen engagement in vitro can prove a powerful means of informing the design of antibody-based vaccines. We have developed this principle into a two-phased immunogen evaluation pipeline to rank-order vaccine candidates. In phase 1, recombinant antigens are screened for reactivity to the germline precursors that produce the antibody responses of interest. To both mimic the architecture of initial antigen engagement and facilitate rapid immunogen screening, these antibodies are expressed as membrane-anchored IgM (mIgM) in 293F indicator cells. In phase 2, the binding hits are multimerized by nanoparticle or proteoliposome display, and they are evaluated for BCR triggering in an engineered B cell line displaying the IgM sequences of interest. Key developments that complement existing methodology in this area include the following: (i) introduction of a high-throughput screening step before evaluation of more time-intensive BCR-triggering analyses; (ii) generalizable multivalent antigen-display platforms needed for BCR activation; and (iii) engineered use of a human B cell line that does not display endogenous antibody, but only ectopically expressed BCR sequences of interest. Through this pipeline, the capacity to initiate favorable antibody responses is evaluated. The entire protocol can be completed within 2.5 months.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6956844PMC
http://dx.doi.org/10.1038/nprot.2016.009DOI Listing

Publication Analysis

Top Keywords

vaccine candidates
8
antibody responses
8
sequences interest
8
vitro reconstitution
4
cell
4
reconstitution cell
4
cell receptor-antigen
4
receptor-antigen interactions
4
interactions evaluate
4
evaluate potential
4

Similar Publications

Introduction: Vaccine platforms such as viral vectors and mRNA can accelerate vaccine development in response to newly emerging pathogens, as demonstrated during the COVID-19 pandemic. However, the differential effects of platform and antigen insert on vaccine immunogenicity remain incompletely understood. Innate immune responses induced by viral vector vaccines are suggested to have an adjuvant effect for subsequent adaptive immunity.

View Article and Find Full Text PDF

Psoralidin acts as a dual protease inhibitor against PL and M of SARS-CoV-2.

FEBS J

January 2025

Department of Life Sciences, School of Natural Sciences, Shiv Nadar Institution of Eminence, Gautam Buddha Nagar, Uttar Pradesh, India.

The emergence of new coronavirus variants and concerns about vaccine effectiveness against these novel variants emphasize the need for broad-spectrum therapeutics targeting conserved coronaviral non-structural proteins. Accordingly, a virtual library of 178 putative inhibitors targeting SARS-CoV-2 Papain-like protease (PL) was compiled through a systematic review of published literature and subsequently screened using molecular docking. Selected hits were analyzed for protease inhibitory activities, binding strength, and antiviral activities against HCoV229E-based surrogate system and subsequently against SARS-CoV-2 for validation.

View Article and Find Full Text PDF

Chain Length Does Matter: Development of High-Potency QS-21-Based Vaccine Adjuvants.

J Med Chem

January 2025

State Key Laboratory of Applied Organic Chemistry, Department of Chemistry, Lanzhou University, Lanzhou 730000, PR China.

Article Synopsis
  • Adjuvants like QS-21 are essential for boosting vaccine effectiveness, but QS-21 faces challenges such as limited availability, complex synthesis, and toxicity.
  • Researchers are working on creating simpler and safer analogues of QS-21 that maintain strong immunogenic properties.
  • The analogues VA05 and VA06 show promising results, generating similar antibody responses as QS-21 while being less toxic, making them potential candidates for better vaccine adjuvants.
View Article and Find Full Text PDF

Unlabelled: Porcine reproductive and respiratory syndrome (PRRS) remains a major threat to animal health and causes substantial economic losses worldwide. The nonstructural protein 11 (NSP11) of the causative agent, PRRS virus (PRRSV), contains a highly conserved nidoviral uridylate-specific endoribonuclease (NendoU) domain essential for viral replication and immune evasion. Targeting NSP11 offers a novel approach to antiviral intervention.

View Article and Find Full Text PDF

An mpox quadrivalent mRNA vaccine elicits sustained and protective immunity in mice against lethal vaccinia virus challenge.

Emerg Microbes Infect

January 2025

Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230031, China.

Assessing the long-term efficacy of MPXV vaccine candidates is crucial for the global response to the ongoing mpox epidemic. Built upon our previous study of the mpox quadrivalent mRNA vaccine, herein we reported that MPXV-1103 could elicit sustained humoral and cellular immunity in mice, including the induction of MPXV A35/B6/A29/M1-specific IgG antibodies, VACV neutralizing antibodies and activated cytotoxic CD8T cells, which provides 100% protection against lethal VACV challenge even at 280 days after the first vaccination. Our results provide critical insights for orthopoxvirus vaccine development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!