Native Oxide Transport and Removal During Atomic Layer Deposition of TiO2 Films on GaAs(100) Surfaces.

ACS Appl Mater Interfaces

Department of Physics, UMBC , Baltimore, Maryland 21250, United States.

Published: January 2016

In this work, we studied the evolution and transport of the native oxides during the atomic layer deposition (ALD) of TiO2 on GaAs(100) from tetrakis dimethyl amino titanium and H2O. Arsenic oxide transport through the TiO2 film and removal during the ALD process was investigated using transmission Fourier transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Experiments were designed to decouple these processes by utilizing their temperature dependence. A 4 nm TiO2 layer was initially deposited on a native oxide surface at 100 °C. Ex situ XPS confirmed that this step disturbed the interface minimally. An additional 3 nm TiO2 film was subsequently deposited at 150 to 250 °C with and without an intermediate thermal treatment step at 250 °C. Arsenic and gallium oxide removal was confirmed during this second deposition, leading to the inevitable conclusion that these oxides traversed at least 4 nm of film so as to react with the precursor and its surface reaction/decomposition byproducts. XPS measurements confirmed the relocation of both arsenic and gallium oxides from the interface to the bulk of the TiO2 film under normal processing conditions. These results explain the continuous native oxide removal observed for alkyl-amine precursor-based ALD processes on III-V surfaces and provide further insight into the mechanisms of film growth.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.5b08998DOI Listing

Publication Analysis

Top Keywords

native oxide
12
tio2 film
12
oxide transport
8
atomic layer
8
layer deposition
8
250 °c
8
arsenic gallium
8
oxide removal
8
tio2
6
film
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!