In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW), such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT) in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa. Brown adipose tissue (BrAT) mass was lower in WWTW bats than in reference site bats. We found lower levels of saturated phospholipid fatty acids and higher levels of mono- and polyunsaturated fatty acids in WWTW bats than in reference site bats, while C18 desaturation and n-6 to n-3 ratios were higher in the WWTW bats. This was not associated with high lipid peroxidation levels in pectoral and cardiac muscle. Combined, these results indicate that WWTW bats rely on iBrAT as an energy source, and opportunistic foraging on abundant, pollutant-tolerant prey may change fatty acid profiles in their tissue, with possible effects on mitochondrial functioning, torpor and energy usage.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4823980PMC
http://dx.doi.org/10.1242/bio.013524DOI Listing

Publication Analysis

Top Keywords

wwtw bats
20
fatty acid
16
brown adipose
12
adipose tissue
12
acid profiles
12
bats
10
wastewater treatment
8
treatment works
8
pectoral cardiac
8
cardiac muscle
8

Similar Publications

Mammals, born with a near-sterile intestinal tract, are inoculated with their mothers' microbiome during birth. Thereafter, extrinsic and intrinsic factors shape their intestinal microbe assemblage. Wastewater treatment works (WWTW), sites synonymous with pollutants and pathogens, receive influent from domestic, agricultural and industrial sources.

View Article and Find Full Text PDF

The brains of bats foraging at wastewater treatment works accumulate arsenic, and have low non-enzymatic antioxidant capacities.

Neurotoxicology

December 2018

School of Life Sciences, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa. Electronic address:

Increasing rates of urbanisation cause ubiquitous infrastructures that remove anthropogenic contaminants - particularly Wastewater Treatment Works (WWTWs) - to become stressed, and hence pollute surrounding water systems. Neoromicia nana bats are suitable models to study the effects of pollution in these environments because they exploit abundant pollutant-tolerant chironomid midges that breed at WWTWs, and consequently accumulate metals such as iron, copper and zinc in their livers and kidneys. If these metals persist in their circulatory systems, and cross the blood brain barrier (BBB) they can have adverse effects on critical functions such as flight and echolocation.

View Article and Find Full Text PDF

In this study we tested the hypothesis that the decrease in habitat quality at wastewater treatment works (WWTW), such as limited prey diversity and exposure to the toxic cocktail of pollutants, affect fatty acid profiles of interscapular brown adipose tissue (iBrAT) in bats. Further, the antioxidant capacity of oxidative tissues such as pectoral and cardiac muscle may not be adequate to protect those tissues against reactive molecules resulting from polyunsaturated fatty acid auto-oxidation in the WWTW bats. Bats were sampled at two urban WWTW, and two unpolluted reference sites in KwaZulu-Natal, South Africa.

View Article and Find Full Text PDF

The Banana Bat, Neoromicia nana, exploits pollution-tolerant chironomids at wastewater treatment works (WWTWs). We investigated how pollutant exposure impacts the detoxification organs, namely the liver and kidney of N. nana.

View Article and Find Full Text PDF

Wastewater Treatment Works (WWTWs) are a ubiquitous feature of the urban landscape. The Banana Bat, Neoromicia nana specifically exploits the high abundance of chironomid midge prey available at WWTWs but these populations also have higher levels of non-essential metals (Cd, Cr and Ni) in their tissues than bats foraging at unpolluted sites. Pollutant exposure may elicit primary physiological responses such as DNA damage and haematological changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!