Background: Human SIRT1 is a class III histone deacetylase (HDAC) family protein. As the overexpression of hSIRT1 leads to cancer, inhibiting its HDAC function may be a better strategy for the treatment of cancer. Till now, only a few reported inhibitor compounds have reached the stage of animal studies; hence, identifying high efficacy inhibitors of hSIRT1 is essential.

Objective: The main objective of the study is to obtain a new class of inhibitor compounds of hSIRT1 by the rational structure-based method.

Methodology: We performed virtual screening using AutoDock Vina for the HDAC domain of hSIRT1 against the Drug- Bank library containing 1,716 compounds. The recently determined crystal structure of the HDAC domain of hSIRT1 (PDB Id: 4KXQ) was used for docking studies. Subsequently, we performed molecular dynamics simulations and an invitro deacetylase assay for selected compounds.

Results: Virtual screening studies yielded seven compounds from two chemical classes, namely diphenyl and oxycoumarin derivatives. Molecular dynamic simulations confirmed that the predicted seven compounds bind well to their respective complex structures. Moreover, four commercially available drugs containing the predicted compounds showed significant inhibition of hSIRT1 deacetylase activity in comparison to the known hSIRT1 inhibitor (sirtinol).

Conclusion: Our results indicate that the compounds of the diphenyl and oxycoumarin series may serve as useful scaffolds in the development of new chemical libraries of hSIRT1 inhibitory activity.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1573406412666160107111612DOI Listing

Publication Analysis

Top Keywords

human sirt1
8
hsirt1
8
inhibitor compounds
8
virtual screening
8
hdac domain
8
domain hsirt1
8
diphenyl oxycoumarin
8
predicted compounds
8
compounds
7
identification inhibitors
4

Similar Publications

Mangiferin Protects Mesenchymal Stem Cells Against DNA Damage and Cellular Aging via SIRT1 Activation.

Mech Ageing Dev

January 2025

Department of Biological Science, College of Natural Science, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Republic of Korea; BK21 FOUR Education Research Group for Age-Associated Disorder Control Technology, Department of Integrative Biological Science, Chosun University, Gwangju 61452, Republic of Korea; The Basic Science Institute of Chosun University, Chosun University, Gwangju 61452, Republic of Korea. Electronic address:

The protective effects of mangiferin (MAG) against etoposide- and high glucose (HG)-induced DNA damage and aging were investigated in human bone marrow-mesenchymal stem cells (hBM-MSCs). Etoposide, a topoisomerase II inhibitor, was used to induce double-strand breaks (DSBs) in hBM-MSCs, resulting in increased genotoxicity, elevated levels of the DNA damage sensor ATM and CDKN1A, and decreased levels of the aging markers H3 and H4. MAG activated AMPK and SIRT1, thus protecting against DSB-induced damage.

View Article and Find Full Text PDF

PrP Glycoprotein Is Indispensable for Maintenance of Skeletal Muscle Homeostasis During Aging.

J Cachexia Sarcopenia Muscle

February 2025

Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, Republic of Korea.

Background: The cellular prion protein (PrP), a glycoprotein encoded by the PRNP gene, is known to modulate muscle mass and exercise capacity. However, the role of PrP in the maintenance and regeneration of skeletal muscle during ageing remains unclear.

Methods: This study investigated the change in PrP expression during muscle formation using C2C12 cells and evaluated muscle function in Prnp wild-type (WT) and knock-out (KO) mice at different ages (1, 9 and 15 months).

View Article and Find Full Text PDF

Background: Muscle atrophy is associated with Type 2 diabetes mellitus, which reduces the quality of life and lacks effective treatment strategies. Previously, it was determined that human umbilical cord mesenchymal stromal cell (hucMSC)-derived exosomes (EXOs) ameliorate diabetes-induced muscle atrophy. However, the systemic application of EXOs is less selective for diseased tissues, which reduces their efficacy and safety associated with their nonspecific biological distribution in vivo.

View Article and Find Full Text PDF

Background: Cavernous nerve injury-induced erectile dysfunction (CNI-ED) is a common complication following radical prostatectomy and severely affects patients' quality of life. The mitochondrial impairment in corpus cavernosum smooth muscle cells (CCSMCs) may be an important pathological mechanism of CNI-ED. Previous studies have shown that transplantation of human adipose derived stem cells (ADSC) can alleviate CNI-ED in a rat model.

View Article and Find Full Text PDF

Background: The pathomechanism of blast traumatic brain injury (TBI) and blunt TBI is different. In blast injury, evidence indicates that a single blast exposure can often manifest long-term neurological impairments. However, its pathomechanism is still elusive, and treatments have been symptomatic.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!