Viruses are obligatory intracellular parasites that suffer strong evolutionary pressure from the host immune system. Rapidly evolving viral genomes can adapt to this pressure by acquiring genes that counteract host defense mechanisms. For example, many vertebrate DNA viruses have hijacked cellular genes encoding cytokines or cytokine receptors to disrupt host cell communication. Insect viruses express suppressors of RNA interference or apoptosis, highlighting the importance of these cell intrinsic antiviral mechanisms in invertebrates. Here, we report the identification and characterization of a family of proteins encoded by insect DNA viruses that are homologous to a 12-kDa circulating protein encoded by the virus-induced Drosophila gene diedel (die). We show that die mutant flies have shortened lifespan and succumb more rapidly than controls when infected with Sindbis virus. This reduced viability is associated with deregulated activation of the immune deficiency (IMD) pathway of host defense and can be rescued by mutations in the genes encoding the homolog of IKKγ or IMD itself. Our results reveal an endogenous pathway that is exploited by insect viruses to modulate NF-κB signaling and promote fly survival during the antiviral response.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725508 | PMC |
http://dx.doi.org/10.1073/pnas.1516122113 | DOI Listing |
Pest Manag Sci
January 2025
Guangdong Provincial Key Laboratory of Insect Developmental Biology and Applied Technology, Guangzhou Key Laboratory of Insect Development Regulation and Application Research, Institute of Insect Science and Technology, School of Life Sciences, South China Normal University, Guangzhou, China.
Background: Species that experience outbreaks and those that display density-dependent phase polymorphism demonstrate density-dependent prophylaxis (DDP) by increasing their immune investment in response to increasing densities. Despite this phenomenon, the mechanisms of DDP remain largely unexplored.
Results: Here, we showed that Spodoptera litura exhibited heightened cuticular melanization and enhanced cuticular immune responses when reared at higher population density.
J Nutr Sci
January 2025
School of Health & Life Sciences, Teesside University, Middlesbrough, UK.
This qualitative research sought to identify factors influencing patient choice of, and patient-related internal and external enablers and barriers to engagement with, type 2 diabetes (T2D) remission strategies offered by the Remission in diabetes (REMI.D) project. Patients had a choice of three diets: Total Diet Replacement (TDR)-Formula Food Products, TDR-Food, and Healthy lifestyle approach; and three activity pathways: Everyday life, General Practitioner referral, and Social hub.
View Article and Find Full Text PDFMicroorganisms
December 2024
Institut Pasteur, Invasive Bacterial Infections, Université Paris Cité, 75015 Paris, France.
Most cases of invasive meningococcal disease (IMD) in Europe are caused by isolates of the serogroups B, C, W, and Y. We aimed to explore cases caused by other unusual serogroups. We retrospectively screened IMD cases in the databases of the National Reference Center for Meningococci and in France between 2014 and 2023.
View Article and Find Full Text PDFPLoS Biol
January 2025
State Key Laboratory of Genetic Engineering, School of Life Sciences, Department of Infectious Diseases, Zhongshan Hospital, Fudan University, Shanghai, China.
The peritrophic matrix (PM) acts as a physical barrier that influences the vector competence of mosquitoes. We have previously shown that gut microbiota promotes PM formation in Anopheles stephensi, although the underlying mechanisms remain unclear. In this study, we identify that the cell wall components of gut commensal bacteria contribute to PM formation.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
College of Marine Science, Guangxi Key Laboratory of Beibu Gulf Biodiversity Conservation, Beibu Gulf Ocean Development Research Center, Beibu Gulf University, Qinzhou, Guangxi, China. Electronic address:
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!