Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasite Hydnora visseri (Hydnoraceae, Piperales). The plastome is 27 kb in length, with 24 genes encoding ribosomal proteins, ribosomal RNAs, tRNAs, and a few nonbioenergetic genes, but no genes related to photosynthesis. The inverted repeat and the small single copy region are only approximately 1.5 kb, and intergenic regions have been drastically reduced. Despite extreme reduction, gene order and orientation are highly similar to the plastome of Piper cenocladum, a related photosynthetic plant in Piperales. Gene sequences in Hydnora are highly divergent and several complementary approaches using the highest possible sensitivity were required for identification and annotation of this plastome. Active transcription is detected for all of the protein-coding genes in the plastid genome, and one of two introns is appropriately spliced out of rps12 transcripts. The whole-genome shotgun read depth is 1,400× coverage for the plastome, whereas the mitochondrial genome is covered at 40× and the nuclear genome at 2×. Despite the extreme reduction of the genome and high sequence divergence, the presence of syntenic, long transcriptionally active open-reading frames with distant similarity to other plastid genomes and a high plastome stoichiometry relative to the mitochondrial and nuclear genomes suggests that the plastome remains functional in H. visseri. A four-stage model of gene reduction, including the potential for complete plastome loss, is proposed to account for the range of plastid genomes in nonphotosynthetic plants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4779604 | PMC |
http://dx.doi.org/10.1093/gbe/evv256 | DOI Listing |
Anim Microbiome
January 2025
Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, CNRS, UMR 9220 ENTROPIE, Nouméa, 98800, New Caledonia.
Background: In holobiont, microbiota is known to play a central role on the health and immunity of its host. Then, understanding the microbiota, its dynamic according to the environmental conditions and its link to the immunity would help to react to potential dysbiosis of aquacultured species. While the gut microbiota is highly studied, in marine invertebrates the hemolymph microbiota is often set aside even if it remains an important actor of the hemolymph homeostasis.
View Article and Find Full Text PDFMol Phylogenet Evol
January 2025
School of Ecology, Sun Yat-sen University, Shenzhen 518107 China; State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, Sun Yat-sen University, Guangzhou 510275 China. Electronic address:
The Cyphotheca-Plagiopetalum-Sporoxeia clade (Sonerileae, Melastomataceae) comprises Cyphotheca Diels, Plagiopetalum Rehder, SporoxeiaW.W.Sm.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA.
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers.
View Article and Find Full Text PDFNutrients
December 2024
Cryptobiotix, Technologiepark-Zwijnaarde 82, 9052 Gent, Belgium.
Background: The human gut microbiota develops in concordance with its host over a lifetime, resulting in age-related shifts in community structure and metabolic function. Little is known about whether these changes impact the community's response to microbiome-targeted therapeutics. Providing critical information on this subject, faecal microbiomes of subjects from six age groups, spanning from infancy to 70-year-old adults (n = six per age group) were harvested.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Cell & Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093.
A spectacular diversity of forms and features allow species to thrive in different environments, yet some structures remain relatively unchanged. Insect compound eyes are easily recognizable despite dramatic differences in visual abilities across species. It is unknown whether distant insect species use similar or different mechanisms to pattern their eyes or what types of genetic changes produce diversity of form and function.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!