Tris-hydroxymethyl-aminomethane enhances capsaicin-induced intracellular Ca(2+) influx through transient receptor potential V1 (TRPV1) channels.

J Pharmacol Sci

Division of Cancer Pathophysiology, National Cancer Center Research Institute, Tokyo 104-0045, Japan; Division of Supportive Care Research, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Tokyo 104-0045, Japan; Innovation Center for Supportive, Palliative and Psychosocial Care, National Cancer Center, Tokyo 104-0045, Japan. Electronic address:

Published: February 2016

Non-selective transient receptor potential vanilloid (TRPV) cation channels are activated by various insults, including exposure to heat, acidity, and the compound capsaicin, resulting in sensations of pain in the skin, visceral organs, and oral cavity. Recently, TRPV1 activation was also demonstrated in response to basic pH elicited by ammonia and intracellular alkalization. Tris-hydroxymethyl aminomethane (THAM) is widely used as an alkalizing agent; however, the effects of THAM on TRPV1 channels have not been defined. In this study, we characterized the effects of THAM-induced TRPV1 channel activation in baby hamster kidney cells expressing human TRPV1 (hTRPV1) and the Ca(2+)-sensitive fluorescent sensor GCaMP2 by real-time confocal microscopy. Notably, both capsaicin (1 μM) and pH 6.5 buffer elicited steep increases in the intracellular Ca(2+) concentration ([Ca(2+)]i), while treatment with THAM (pH 8.5) alone had no effect. However, treatment with THAM (pH 8.5) following capsaicin application elicited a profound, long-lasting increase in [Ca(2+)]i that was completely inhibited by the TRPV1 antagonist capsazepine. Taken together, these results suggest that hTRPV1 pre-activation is required to provoke enhanced, THAM-induced [Ca(2+)]i increases, which could be a mechanism underlying pain induced by basic pH.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jphs.2015.11.009DOI Listing

Publication Analysis

Top Keywords

intracellular ca2+
8
transient receptor
8
receptor potential
8
trpv1 channels
8
treatment tham
8
trpv1
6
tris-hydroxymethyl-aminomethane enhances
4
enhances capsaicin-induced
4
capsaicin-induced intracellular
4
ca2+ influx
4

Similar Publications

Inflammation is a physiological response of the immune system to infectious agents or tissue injury, which involves a cascade of vascular and cellular events and the activation of biochemical pathways depending on the type of harmful agent and the stimulus generated. The Kunitz peptide HCIQ2c1 of sea anemone is a strong protease inhibitor and exhibits neuroprotective and analgesic activities. In this study, we investigated the anti-inflammatory potential of HCIQ2c1 in histamine- and lipopolysaccharide (LPS)-activated RAW 264.

View Article and Find Full Text PDF

The Molecular Biology of Placental Transport of Calcium to the Human Foetus.

Int J Mol Sci

January 2025

Department of Clinical Biochemistry, University Hospital Southampton NHS Foundation Trust, Southampton General Hospital, Southampton SO16 6YD, UK.

From fertilisation to delivery, calcium must be transported into and within the foetoplacental unit for intracellular signalling. This requires very rapid, precisely located Ca transfers. In addition, from around the eighth week of gestation, increasing amounts of calcium must be routed directly from maternal blood to the foetus for bone mineralisation through a flow-through system, which does not impact the intracellular Ca concentration.

View Article and Find Full Text PDF

Catecholaminergic polymorphic ventricular tachycardia (CPVT) is a highly arrhythmogenic syndrome triggered by stress, primarily linked to gain-of-function point mutations in the cardiac ryanodine receptor (RyR2). Flecainide, as an effective therapy for CPVT, is a known blocker of the surface-membrane Na channel, also affecting the intracellular RyR2 channel. The therapeutic relevance of the flecainide-RyR2 interaction remains controversial, as flecainide blocks only the RyR2 current flowing in the opposite direction to the physiological Ca release from the sarcoplasmic reticulum (SR).

View Article and Find Full Text PDF

Radiotherapy is a powerful tumor therapeutic strategy for gastric cancer patients. However, radioresistance is a major obstacle to kill cancer cells. Ginger ( Roscoe) exerts a potential function in various cancers and is a noble combined therapy to overcome radioresistance in gastric cancer radiotherapy.

View Article and Find Full Text PDF

TP53I11 Functions Downstream of Multiple MicroRNAs to Increase ER Calcium Levels and Inhibits Cancer Cell Proliferation.

Int J Mol Sci

December 2024

Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.

Cells meticulously regulate free calcium ion (Ca) concentrations, with the endoplasmic reticulum (ER) being crucial for Ca homeostasis. Disruptions in ER Ca balance can contribute to various diseases, including cancer. Although considerable research has focused on the direct mechanisms of ER Ca regulation, the role of microRNAs (miRNAs) in this process remains underexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!