Background: The developing visual system in Drosophila melanogaster provides an excellent model with which to examine the effects of changing microenvironments on neural cell migration via microfluidics, because the combined experimental system enables direct genetic manipulation, in vivo observation, and in vitro imaging of cells, post-embryo. Exogenous signaling from ligands such as fibroblast growth factor (FGF) is well-known to control glia differentiation, cell migration, and axonal wrapping central to vision.
New Method: The current study employs a microfluidic device to examine how controlled concentration gradient fields of FGF are able to regulate the migration of vision-critical glia cells with and without cellular contact with neuronal progenitors.
Results: Our findings quantitatively illustrate a concentration-gradient dependent chemotaxis toward FGF, and further demonstrate that glia require collective and coordinated neuronal locomotion to achieve directionality, sustain motility, and propagate long cell distances in the visual system.
Comparison With Existing Method(s): Conventional assays are unable to examine concentration- and gradient-dependent migration. Our data illustrate quantitative correlations between ligand concentration/gradient and glial cell distance traveled, independent or in contact with neurons.
Conclusions: Microfluidic systems in combination with a genetically-amenable experimental system empowers researchers to dissect the signaling pathways that underlie cellular migration during nervous system development. Our findings illustrate the need for coordinated neuron-glia migration in the Drosophila visual system, as only glia within heterogeneous populations exhibited increasing motility along distances that increased with increasing FGF concentration. Such coordinated migration and chemotactic dependence can be manipulated for potential therapeutic avenues for NS repair and/or disease treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4775339 | PMC |
http://dx.doi.org/10.1016/j.jneumeth.2015.12.012 | DOI Listing |
BMC Musculoskelet Disord
January 2025
Department of Orthopedics and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, People's Republic of China.
Background: Osteonecrosis of the femoral head (ONFH) is a challenging condition, primarily affecting young and middle-aged individuals, which results in hip dysfunction and, ultimately, femoral head collapse. However, the comparative effectiveness of joint-preserving procedures, particularly in the early stages of ONFH (ARCO stage I or II), remains inconclusive. This study aims to evaluate the efficacy of a novel technique called small-diameter core decompression (CD) combined with platelet-rich plasma (PRP), for the treatment of early-stage ONFH.
View Article and Find Full Text PDFBMC Womens Health
January 2025
Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK.
Background: S. haematobium is a recognized carcinogen and is associated with squamous cell carcinoma of the bladder. Its association with high-risk(HR) human papillomavirus (HPV) persistence, cervical pre-cancer and cervical cancer incidence has not been fully explored.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Information Systems, University of Haifa, Haifa, Israel.
This study explores the question whether Artificial Intelligence (AI) can outperform human experts in animal pain recognition using sheep as a case study. It uses a dataset of N = 48 sheep undergoing surgery with video recordings taken before (no pain) and after (pain) surgery. Four veterinary experts used two types of pain scoring scales: the sheep facial expression scale (SFPES) and the Unesp-Botucatu composite behavioral scale (USAPS), which is the 'golden standard' in sheep pain assessment.
View Article and Find Full Text PDFBehav Res Methods
January 2025
Department of Psychology, Sapienza, University of Rome, Rome, Italy.
The complex interplay between low- and high-level mechanisms governing our visual system can only be fully understood within ecologically valid naturalistic contexts. For this reason, in recent years, substantial efforts have been devoted to equipping the scientific community with datasets of realistic images normed on semantic or spatial features. Here, we introduce VISIONS, an extensive database of 1136 naturalistic scenes normed on a wide range of perceptual and conceptual norms by 185 English speakers across three levels of granularity: isolated object, whole scene, and object-in-scene.
View Article and Find Full Text PDFSci Rep
January 2025
College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832003, China.
In response to the rotary ploughing equipment in the stubble land to implement protective operations, the stubble is large in number and strong in toughness, not easy to crush, resulting in rotary ploughing equipment to produce entanglement and increased resistance to rotary ploughing and other issues. In this study, researchers designed a bionic rotary tillage blade (B-RTB) based on the bionic structural equations of the Marmota claw. A straw-soil complex shear performance test was conducted to investigate the effect of straw on soil shear strength.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!