A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Classification of LV wall motion in cardiac MRI using kernel Dictionary Learning with a parametric approach. | LitMetric

In this paper, we propose a parametric approach for the assessment of wall motion in Left Ventricle (LV) function in cardiac cine-Magnetic Resonance Imaging (MRI). Time-signal intensity curves (TSICs) are identified in Spatio-temporal image profiles extracted from different anatomical segments in a cardiac MRI sequence. Different parameters are constructed from specific TSICs that present a decreasing then increasing shape reflecting dynamic information of the LV contraction. The parameters extracted from these curves are related to: 1) an average curve based on a clustering process, 2) curve skewness and 3) cross correlation values between each average clustered curve and a patient-specific reference. Several tests are performed in order to construct different vectors to train a sparse classifier based on kernel Dictionary Learning (DL). Results are compared with other classifiers like Support Vector Machine (SVM) and Discriminative Dictionary Learning. The best classification performance is obtained with information of skewness and the average curve with an accuracy about 94% using the mentioned sparse based kernel DL with a radial basis function kernel.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7320075DOI Listing

Publication Analysis

Top Keywords

dictionary learning
12
wall motion
8
cardiac mri
8
kernel dictionary
8
parametric approach
8
average curve
8
based kernel
8
classification wall
4
motion cardiac
4
kernel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!