Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
One way of enhancing the dexterity of powered myoelectric prostheses is via proportional and simultaneous control of multiple degrees-of-freedom (DOFs). Recently, it has been demonstrated that the reconstruction of finger movement is feasible by using features of the surface electromyogram (sEMG) signal. In such paradigms, the number of predictors and target variables is usually large, and strong correlations are present in both the input and output domains. Synergistic patterns in the sEMG space have been previously exploited to facilitate kinematics decoding. In this work, we propose a framework for simultaneous input-output dimensionality reduction based on the generalized eigenvalue problem formulation of multiple linear regression (MLR). We demonstrate that the proposed methodology outperforms simultaneous input-output dimensionality reduction based on principal component analysis (PCA), while the prediction accuracy of the full rank regression (FRR) method can be achieved by using only a few relevant dimensions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2015.7320042 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!