This paper demonstrates the feasibility of utilizing impulse radio ultra wideband (IR-UWB) signaling technique for reliable, wireless transmission of dopamine concentration levels recorded by fast-scan cyclic voltammetry (FSCV) at a carbon-fiber microelectrode (CFM) to address the problem of elevated data rates in high-channel-count neurochemical monitoring. Utilizing an FSCV-sensing chip fabricated in AMS 0.35μm 2P/4M CMOS, a 3-5-GHz, IR-UWB transceiver (TRX) chip fabricated in TSMC 90nm 1P/9M RF CMOS, and two off-chip, miniature, UWB antennae, wireless transfer of pseudo-random binary sequence (PRBS) data at 50Mbps over a distance of <;1m is first shown with bit-error rates (BER) <; 10(-3). Further, IR-UWB wireless transmission of dopamine concentration levels prerecorded with FSCV at a CFM during flow injection analysis (FIA) is also demonstrated with transmitter (TX) power dissipation of only ~4.4μW from 1.2V, representing two orders of magnitude reduction in TX power consumption compared to that of a conventional frequency-shift-keyed (FSK) link operating at ~433MHz.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2015.7320029 | DOI Listing |
Materials (Basel)
November 2024
Department of Materials Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan.
Water vapor-impermeable AlON/HfO bilayer films were constructed through a hybrid high-power impulse magnetron sputtering (HiPIMS) and radio-frequency magnetron sputtering process (RFMS), applied as an encapsulation of flexible electronics such as organic photovoltaics. The deposition of monolithic and amorphous AlON films through HiPIMS was investigated by varying the duty cycles from 5% to 20%. At an accelerated test condition, 60 °C, and 90% relative humidity, a 100 nm thick monolithic AlON film prepared using a duty cycle of 20% exhibited a low water vapor transmission rate (WVTR) of 0.
View Article and Find Full Text PDFSci Rep
November 2024
Missouri Institute for Defense and Energy, University of Missouri-Kansas City, Kansas City, MO, 64110, USA.
Sci Rep
November 2024
Department of Otorhinolaryngology-Head and Neck Surgery, College of Medicine, Hanyang University, Seoul, Republic of Korea.
Sensors (Basel)
October 2024
Department of Maritime ICT & Mobility Research, Korea Institute of Ocean Science & Technology, 385, Haeyang-ro, Yeongdo-gu, Busan 49111, Republic of Korea.
Sensors (Basel)
September 2024
Department of Electronic Engineering, Hanyang University, Seoul 04763, Republic of Korea.
Mental distress-induced imbalances in autonomic nervous system activities adversely affect the electrical stability of the cardiac system, with heart rate variability (HRV) identified as a related indicator. Traditional HRV measurements use electrocardiography (ECG), but impulse radio ultra-wideband (IR-UWB) radar has shown potential in HRV measurement, although it is rarely applied to psychological studies. This study aimed to assess early high levels of mental distress using HRV indices obtained using radar through modified signal processing tailored to reduce phase noise and improve positional accuracy.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!