In this study, we consider using sparse representation and the Gini Index (GI) for Arrhythmia classification. Our approach involves, first, designing a separate dictionary for each Arrhythmia class using a set of labeled training QRS complexes. Sparse representations, based on the designed dictionaries, of each new test QRS complex are then calculated. Its class is finally predicted using the winner-takes-all principle; that is, the class associated with the highest GI is chosen. Our experiments showed promising results for the classification of premature ventricular contractions using a patient-specific approach. For many of the subjects considered, our classifier attained accuracies close to 100 % on the test set.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7319715DOI Listing

Publication Analysis

Top Keywords

sparse representation
8
representation gini
8
ventricular ectopic
4
ectopic beats
4
beats classification
4
classification sparse
4
gini study
4
study consider
4
consider sparse
4
gini arrhythmia
4

Similar Publications

In shallow water, reverberation complicates the detection of low-intensity, variable-echo moving targets, such as divers. Traditional methods often fail to distinguish these targets from reverberation, and data-driven methods are constrained by the limited data on intruding targets. This paper introduces the online robust principal component analysis and multimodal anomaly detection (ORMAD) method to address these challenges.

View Article and Find Full Text PDF

Convergent-Diffusion Denoising Model for multi-scenario CT Image Reconstruction.

Comput Med Imaging Graph

January 2025

The Department of Computer and Data Science, Case Western Reserve University, Cleveland, OH, USA; The Department of Biomedical Engineering, Case Western Reserve University, Cleveland, OH, USA.

A generic and versatile CT Image Reconstruction (CTIR) scheme can efficiently mitigate imaging noise resulting from inherent physical limitations, substantially bolstering the dependability of CT imaging diagnostics across a wider spectrum of patient cases. Current CTIR techniques often concentrate on distinct areas such as Low-Dose CT denoising (LDCTD), Sparse-View CT reconstruction (SVCTR), and Metal Artifact Reduction (MAR). Nevertheless, due to the intricate nature of multi-scenario CTIR, these techniques frequently narrow their focus to specific tasks, resulting in limited generalization capabilities for diverse scenarios.

View Article and Find Full Text PDF

Contrastive learning of T cell receptor representations.

Cell Syst

December 2024

Division of Infection and Immunity, University College London, London WC1E 6BT, UK; Institute for the Physics of Living Systems, University College London, London WC1E 6BT, UK. Electronic address:

Computational prediction of the interaction of T cell receptors (TCRs) and their ligands is a grand challenge in immunology. Despite advances in high-throughput assays, specificity-labeled TCR data remain sparse. In other domains, the pre-training of language models on unlabeled data has been successfully used to address data bottlenecks.

View Article and Find Full Text PDF

The Waddington landscape was initially proposed to depict cell differentiation, and has been extended to explain phenomena such as reprogramming. The landscape serves as a concrete representation of cellular differentiation potential, yet the precise representation of this potential remains an unsolved problem, posing significant challenges to reconstructing the Waddington landscape. The characterization of cellular differentiation potential relies on transcriptomic signatures of known markers typically.

View Article and Find Full Text PDF

Sparse coding enables cortical populations to represent sensory inputs efficiently, yet its temporal dynamics remain poorly understood. Consistent with theoretical predictions, we show that stimulus onset triggers broad cortical activation, initially reducing sparseness and increasing mutual information. Subsequently, competitive interactions sustain mutual information as activity declines and sparseness increases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!