Over the past decade, substantial effort has been directed toward developing ultrasonic systems for medical imaging. With advances in computational power, previously theorized scanning methods such as ultrasound tomography can now be realized. In this paper, we present the design, error analysis, and initial backprojection images from a single element 3D ultrasound tomography system. The system enables volumetric pulse-echo or transmission imaging of distal limbs. The motivating clinical applications include: improving prosthetic fittings, monitoring bone density, and characterizing muscle health. The system is designed as a flexible mechanical platform for iterative development of algorithms targeting imaging of soft tissue and bone. The mechanical system independently controls movement of two single element ultrasound transducers in a cylindrical water tank. Each transducer can independently circle about the center of the tank as well as move vertically in depth. High resolution positioning feedback (~1μm) and control enables flexible positioning of the transmitter and the receiver around the cylindrical tank; exchangeable transducers enable algorithm testing with varying transducer frequencies and beam geometries. High speed data acquisition (DAQ) through a dedicated National Instrument PXI setup streams digitized data directly to the host PC. System positioning error has been quantified and is within limits for the imaging requirements of the motivating applications.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7319647DOI Listing

Publication Analysis

Top Keywords

single element
12
element ultrasound
12
ultrasound tomography
12
tomography system
8
system
6
ultrasound
4
system decade
4
decade substantial
4
substantial effort
4
effort directed
4

Similar Publications

Expanding the genomic diversity of human anelloviruses.

Virus Evol

January 2025

MRC-University of Glasgow Centre for Virus Research, The University of Glasgow, Glasgow G61 1QH, United Kingdom.

Anelloviruses are a group of small, circular, single-stranded DNA viruses that are found ubiquitously across mammalian hosts. Here, we explored a large number of publicly available human microbiome datasets and retrieved a total of 829 anellovirus genomes, substantially expanding the known diversity of these viruses. The majority of new genomes fall within the three major human anellovirus genera: , and , while we also present new genomes of the under-sampled , and genera.

View Article and Find Full Text PDF

Recurrent groin pain following periacetabular osteotomy (PAO) is a challenging problem. The purpose of our study was to evaluate the position and dynamics of the psoas tendon as a potential cause for recurrent groin pain following PAO. A total of 386 PAO procedures, performed between January 2013 and January 2020, were identified from a single surgeon series.

View Article and Find Full Text PDF

The topography of nullomer-emerging mutations and their relevance to human disease.

Comput Struct Biotechnol J

December 2024

Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA.

Nullomers are short DNA sequences (11-18 base pairs) that are absent from a genome; however, they can emerge due to mutations. Here, we characterize all possible putative human nullomer-emerging single base pair mutations, population variants and disease-causing mutations. We find that the primary determinants of nullomer emergence in the human genome are the presence of CpG dinucleotides and methylated cytosines.

View Article and Find Full Text PDF

An erbium-doped fiber ring laser based on a single-mode fiber-no-core fiber-single-mode fiber (SMF-NCF-SMF) structure was constructed and experimentally demonstrated for label-free DNA hybridization measurement. The SMF-NCF-SMF structure acts as a sensing element and a filter to select the laser wavelength. The proposed fiber ring laser sensor exhibits a high optical signal-to-noise ratio (SNR, >50 dB) and narrow full width at half maximum (FWHM, <0.

View Article and Find Full Text PDF

Deciphering the Genetic Basis of Sugar Cane ( L) Root System and Related Traits under Nitrogen Stress through the Integration of Genome-Wide Association Studies and RNA-seq.

J Agric Food Chem

January 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530005, China.

Nitrogen (N) is an essential element for plant growth and development. Identifying functional gene loci associated with nitrogen absorption and utilization in sugar cane can facilitate the development of nutrient-efficient sugar cane varieties. In this study, sugar cane seedlings were subjected to normal and low nitrogen stress treatments within a hydroponic system for the identification of candidate genes related to six root-associated traits using a diversity population of 297 accessions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!