Introduction: Tissue engineering offers the possibility of developing a biological substitute material in vitro with the inherent properties required in vivo. However, the inadequate performance in vascular replacement of small diameter vascular grafts (VG) reduces considerably the current alternatives in this field. In this study, a bilayered tubular VG was produced, where its mechanical response was tested at high pressure ranges and compared to a native femoral artery.
Materials And Method: The VG was obtained using sequential electrospinning technique, by means of two blends of Poly(L-lactic acid) and segmented poly(ester urethane). Mechanical testing was performed in a biodynamic system and the pressure-strain relationship was used to determine the elastic modulus.
Results: Elastic modulus assessed value of femoral artery at a high pressure range (33.02×106 dyn/cm(2)) was founded to be 36% the magnitude of VG modulus (91.47×106 dyn/cm(2)) at the same interval.
Conclusion: A new circulating mock in combination with scan laser micrometry have been employed for the mechanical evaluation of bioresorbable bilayered VGs. At same pressure levels, graft elasticity showed a purely "collagenic" behavior with respect to a femoral artery response.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2015.7319155 | DOI Listing |
EClinicalMedicine
October 2024
Toronto 3D Knowledge Synthesis and Clinical Trials Unit, Clinical Nutrition and Risk Factor Modification Center, St. Michael's Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada.
Background: Use of health applications (apps) to support healthy lifestyles has intensified. Different app features may support effectiveness, including gamification defined as the use of game elements in a non-game situation. Whether health apps with gamification can impact behaviour change and cardiometabolic risk factors remains unknown.
View Article and Find Full Text PDFNatl Sci Rev
January 2025
State Key Laboratory of Superhard Materials, Jilin University, Changchun 130012, China.
The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.
View Article and Find Full Text PDFPatient Prefer Adherence
January 2025
Division of Hypertension, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
Introduction: Self-care practices are crucial for optimizing blood pressure control and are influenced by multilevel factors.
Objective: To examine the influences of multilevel factors on hypertension self-care practices among individuals with uncontrolled hypertension and to determine the relationship between hypertension self-care practices and blood pressure.
Methods: The study was conducted in primary, secondary, and tertiary care settings in Bangkok, selected for convenience, where individuals with uncontrolled hypertension were recruited using a convenience sampling method based on specific inclusion criteria.
Front Pharmacol
December 2024
Department of Obstetrics and Gynecology, Second Hospital of Hebei Medical University, Shijiazhuang, China.
Background: Medroxyprogesterone acetate (MPA), a synthetic progestogen, is extensively used for the treatment of various conditions, including contraception, irregular menstruation, functional uterine bleeding, and endometriosis. However, like all pharmaceutical agents, MPA is associated with adverse drug reactions. This study aimed to evaluate the adverse events (AEs) associated with MPA in by analyzing real-world data from the U.
View Article and Find Full Text PDFHigh blood pressure is a significant risk factor for cardiovascular diseases and is linked to an increased risk of mild cognitive impairment (MCI). The lack of effective treatments for these conditions highlights the urgent need for novel therapeutic approaches. Recent research suggests that the gut microbiota-brain-gut axis plays a crucial role in the pathogenesis of hypertension and MCI by regulating the nervous, endocrine, and immune systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!