Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A common motor deficit in individuals post-stroke is altered interlimb coupling. Efforts at one extremity can cause involuntary muscle activity and movement at a different extremity. An important step in understanding interlimb coupling and developing effective treatment strategies is to have an accurate quantification of the motor behavior. This paper outlines the development of an approach to measure interlimb coupling between the upper and lower extremity. Isometric and EMG based approaches were explored before determining that the use of a haptic robotic system was ideal to quantify altered interlimb coupling. This is a novel engineering approach that can measure biomechanical parameters while avoiding confounding factors. Preliminary evidence shows that lower extremity efforts cause involuntary movement in the upper extremity in stereotypical flexion and extension patterns.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857708 | PMC |
http://dx.doi.org/10.1109/EMBC.2015.7319141 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!