In the present study we have evaluated the electroencephalogram (EEG) signal recorded during ankle dorsal and plantar flexion in children with spastic Cerebral Palsy (CP) after Functional Electrical Stimulation (FES) of the Tibialis Anterior (TA) muscles. The intervention group had 10 children with spastic diaplegic/hemiplegic CP within the age group of 5 to 14 years of age who received both FES for 30 minutes and the conventional physiotherapy for 30 minutes a day, while the control group had 5 children who received only conventional physiotherapy for 60(30 + 30) minutes a day only. Both group were treated for 5 days a week, up to 12 weeks. The EEG data were analyzed for Peak Alpha Frequency (PAF), sensorimotor rhythm (SMR), mu wave suppression and power spectral density (PSD) of all the bands. The results showed a decrease in SMR and mu wave suppression in the intervention group as compared to the control group, indicating a positive/greater improvement in performance of motor activities. Therefore, from this study we could conclude that FES combined with conventional physiotherapy improves the motor activity in children with spastic CP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/EMBC.2015.7319130 | DOI Listing |
Int J Surg
January 2025
Senior researcher and lecturer at the Master Specialized Physical Therapy programs at Avans+, Breda, The Netherlands.
Introduction: Spastic Cerebral Palsy (CP) is a major cause of movement disorders in pediatric rehabilitation. Current treatments are often invasive and may lead to substantial discomfort. Extracorporeal shockwave therapy (ESWT) presents a potential alternative, offering a less invasive approach with a reduced side effect profile.
View Article and Find Full Text PDFAnn Clin Transl Neurol
January 2025
Movement Disorders Program, Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA.
Biallelic loss-of-function variants in AP4S1 cause childhood-onset hereditary spastic paraplegia. A recent report suggested that heterozygous AP4S1 variants lead to a syndrome of lower limb spasticity and dysregulation of sphincter function. We critically evaluate this claim against clinical observations in 28 heterozygous carriers of the same AP4S1 variant (NM_007077.
View Article and Find Full Text PDFMol Genet Genomic Med
February 2025
Department of Pediatric Neurology, Hospital Universitario Quirónsalud, Madrid, Spain.
Background: Biallelic pathogenic variants in the FUCA1 gene are associated with fucosidosis. This report describes a 4-year-old boy presenting with psychomotor regression, spasticity, and dystonic postures.
Methods And Results: Trio-based whole exome sequencing revealed two previously unreported loss-of-function variants in the FUCA1 gene.
Int J Mol Sci
January 2025
Institute for Maternal and Child Health IRCCS Burlo Garofolo, Via dell'Istria, 65, 34137 Trieste, Italy.
Pathogenic variants in , encoding dynamin-like protein-1 (DRP1), cause a lethal encephalopathy. DRP1 defective function results in altered mitochondrial networks, characterized by elongated/spaghetti-like, highly interconnected mitochondria. We validated in yeast the pathogenicity of a de novo variant identified by whole exome sequencing performed more than 10 years after the patient's death.
View Article and Find Full Text PDFCerebellum
January 2025
Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy.
Autosomal recessive spastic ataxia of Charlevoix-Saguenay (ARSACS) is a rare inherited condition described worldwide and characterized by a wide spectrum of heterogeneity in terms of genotype and phenotype. How sacsin loss leads to neurodegeneration is still unclear, and current knowledge indicates that sacsin is involved in multiple functional mechanisms. We hence hypothesized the existence of epigenetic factors, in particular alterations in methylation patterns, that could contribute to ARSACS pathogenesis and explain the pleiotropic effects of SACS further than pathogenic mutations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!