A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Differential pathlength factor estimation for brain-like tissue from a single-layer Monte Carlo model. | LitMetric

A Monte Carlo simulation-based computational model has been developed for tracing the pathway of light within a single layer of tissue like bloodless human brain. A reflectance mode source-detector geometry is assumed to illuminate the tissue slab with an irradiation of a near infrared wavelength and to detect the re-emitted light intensity. Light is considered to be attenuated within tissue by scattering and absorption. The model has been used to predict the relationship of mean optical path of photons with variable source-detector geometry and thus, to determine a differential pathlength factor (DPF) of 5.66 for incident light of wavelength 810 nm.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7319092DOI Listing

Publication Analysis

Top Keywords

differential pathlength
8
pathlength factor
8
monte carlo
8
source-detector geometry
8
factor estimation
4
estimation brain-like
4
tissue
4
brain-like tissue
4
tissue single-layer
4
single-layer monte
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!