Cooperative sensors are an emerging technology consisting of autonomous sensor units working in concert to measure physiological signals requiring distant sensing points, such as biopotential (e.g., ECG) or bioimpedance (e.g., EIT). Their advantage with respect to the state-of-the-art technology is that they do not require shielded and even insulated cables to measure best quality biopotential or bioimpedance signals. Moreover, as all sensors are simply connected to a single electrical connection (which can be for instance a conductive vest) there is no connecting limitation to the miniaturization of the system or to its extension to large numbers of sensors. This results in an increase of wearability and comfort, as well as in a decrease of costs and integration challenges. However, cooperative sensors must communicate to be synchronized and to centralize the data. This paper presents possible communication strategies and focuses on the implementation of one of them that is particularly well suited for biopotential and bioimpedance measurements.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7319055DOI Listing

Publication Analysis

Top Keywords

cooperative sensors
12
biopotential bioimpedance
8
sensors
5
synchronization communication
4
communication cooperative
4
sensors cooperative
4
sensors emerging
4
emerging technology
4
technology consisting
4
consisting autonomous
4

Similar Publications

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

The direct discharge of cationic surfactants into environmental matrices has exponentially increased due to their wide application in many products. These compounds and their degraded products disrupt microbial dynamics, hinder plant survival, and affect human health. Therefore, there is an urgent need to develop electroanalytical assessment techniques for their identification, determination, and monitoring.

View Article and Find Full Text PDF

Single-phase dye-embedded triple-emitting EY&BPEA@Zr-MOFs for selective detection of inorganic ions in environmental water.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Applied Chemistry and Materials, Zhuhai College of Science and Technology, No. 8 Anji East Road, Zhuhai 519040, China. Electronic address:

The synthesis of multi-wavelength emission fluorescent metal-organic framework sensors has received widespread attention in recent years. Under solvothermal conditions, a series of triple-emission fluorescent sensors were fabricated by in situ encapsulation of red emitting Eosin Y and green emitting 9,10-bis(phenylethynyl)anthracene (BPEA) into a blue emitting naphthalene-based Zr-MOF. By combining the dye quantity regulation and the resonance energy transfer between MOFs and dyes, the single-phase EY&BPEA@Zr-MOFs exhibited tunable triple-emission fluorescence.

View Article and Find Full Text PDF

Neural network-based dynamic target enclosing control for uncertain nonlinear multi-agent systems over signed networks.

Neural Netw

December 2024

School of Aeronautics and Astronautics, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China; Aircraft Swarm Intelligent Sensing and Cooperative Control Key Laboratory of Sichuan Province, Chengdu, 611731, Sichuan, China. Electronic address:

Neural networks have significant advantages in the estimation of uncertainty dynamics, which can afford highly accurate prediction outcomes and enhance control robustness. With this in mind, this study presents a neural network-based method to investigate the uncertain target enclosing control problem for multi-agent systems over signed networks. Firstly, a nominal target enclosing controller is constructed by adding the target information component into the classical bipartite consensus error, in which the multi-agent system can be grouped to enclose the target from opposite sides.

View Article and Find Full Text PDF

Introduction: Macrophages abundantly express liver X receptors (LXRs), which are ligand-dependent transcription factors and sensors of several cholesterol metabolites. In response to agonists, LXRs induce the expression of key lipid homeostasis regulators. Crosstalk between LXRs and inflammatory signals exist in a cell type- and gene-specific manner.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!