The aim of this study was to evaluate the neuronal firing changes in the subthalamic nucleus (STN) in a graded mouse model of Parkinson's disease. Unilateral graded dopaminergic cell loss in the substantia nigra pars compacta was achieved by injecting different concentrations of 6-hydroxydopamine (6-OHDA) in the right medial forebrain bundle. Electrophysiological analysis of neuronal firing patterns in the STN revealed an increased firing rate, burst index, and interspike interval coefficient of variation in groups treated with higher 6-OHDA concentrations. The results of this study suggest the detailed pathophysiological characteristics of Parkinson's disease in a mouse model.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7318902DOI Listing

Publication Analysis

Top Keywords

neuronal firing
12
firing patterns
8
subthalamic nucleus
8
graded dopaminergic
8
dopaminergic cell
8
cell loss
8
mouse model
8
parkinson's disease
8
characteristics neuronal
4
firing
4

Similar Publications

Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation.

View Article and Find Full Text PDF

Previous studies have shown that high-gamma (HG) activity in the primary visual cortex (V1) has distinct higher (broadband) and lower (narrowband) components with different functions and origins. However, it is unclear whether a similar segregation exists in the primary somatosensory cortex (S1), and the origins and roles of HG activity in S1 remain unknown. Here, we investigate the functional roles and origins of HG activity in S1 during tactile stimulation in humans and a rat model.

View Article and Find Full Text PDF

Unlabelled: Layer 6 corticothalamic (L6CT) neurons project to both cortex and thalamus, inducing multiple effects including the modulation of cortical and thalamic firing, and the emergence of high gamma oscillations in the cortical local field potential (LFP). We hypothesize that the high gamma oscillations driven by L6CT neuron activation are shaped by the dynamic engagement of intracortical and cortico-thalamo-cortical circuits. To test this, we optogenetically activated L6CT neurons in NTSR1-cre mice expressing channelrhodopsin-2 in L6CT neurons.

View Article and Find Full Text PDF

Epilepsy is characterized by neuronal discharges that occur as a result of disruption of the excitatory and inhibitory balance of the brain due to functional and structural changes. It has been shown in the literature that this neurological disorder may be related to the expression of ion channels. Any defect in the function or expression mechanism of these channels can lead to various neuronal disorders such as epilepsy.

View Article and Find Full Text PDF

Evaluation of transcriptomic changes after photobiomodulation in spinal cord injury.

Sci Rep

January 2025

Neuroscience and Ophthalmology, Department of Inflammation and Ageing, School of Infection, Inflammation and Immunology, College of Medicine and Health, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.

Spinal cord injury (SCI) is a significant cause of lifelong disability, with no available disease-modifying treatments to promote neuroprotection and axon regeneration after injury. Photobiomodulation (PBM) is a promising therapy which has proven effective at restoring lost function after SCI in pre-clinical models. However, the precise mechanism of action is yet to be determined.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!