This paper presents an ultra low-power integrated interface for capacitive and resistive MEMS and sensors, intended for use in biomedical applications. The interface encodes the sensed data in the time between transmitted UWB pulses: this reduces the number of transmitted bits and benefits the power consumption. The interface was designed and fabricated in the UMC 0.18μm CMOS process: the power consumption of the system was measured to be 1.04μW at a sample rate of 37Hz.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7318505DOI Listing

Publication Analysis

Top Keywords

power consumption
8
104µw wireless
4
wireless integrated
4
integrated mems
4
interface
4
mems interface
4
interface umc
4
umc 018µm
4
018µm cmos
4
cmos paper
4

Similar Publications

With the rapid decline in the levelized cost, offshore wind power offers a new option for the clean energy transition of the power sector in China's coastal areas. Here, we develop a power system capacity expansion and operation optimization model to simulate the penetration of offshore wind power in China and quantify the associated health effects. We find that offshore wind power has great potential in mitigating the negative impacts of existing coal-fired power emissions.

View Article and Find Full Text PDF

Background: In England, 23% of children aged 11 start their teenage years living with obesity. An adolescent living with obesity is five times more likely to live with obesity in adult life. There is limited research and policy incorporating adolescents' views on how they experience the commercial determinants of dietary behaviour and obesity, which misses an opportunity to improve services and policies that aim to influence the prevalence of childhood obesity.

View Article and Find Full Text PDF

On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed. It resulted in the release into the fragile arid ecosystems of rocket propellants, i.e.

View Article and Find Full Text PDF

A photosynthesis-derived bionic system for sustainable biosynthesis.

Angew Chem Int Ed Engl

January 2025

Wuhan University, College of Chemistry and Molecular Sciences, Luojiashan Street, 430072, Wuhan, CHINA.

"Cell factory" strategy based on microbial anabolism pathways offers an intriguing alternative to relieve the dependence on fossil fuels, which are recognized as the main sources of CO2 emission. Typically, anabolism of intracellular substance in cell factory requires the consumption of sufficient reduced nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP). However, it is of great challenge to modify the natural limited anabolism and to increase the insufficient level of NADPH and ATP to optimum concentrations without causing metabolic imbalance.

View Article and Find Full Text PDF

Background: Extended monovision is a novel mix-and-match approach that has been recently introduced. It involves implanting an aspherical monofocal intraocular lens (IOL) for distance vision in the dominant eye, and a bifocal extended depth-of-focus (EDOF) IOL in the nondominant eye. The target refraction for the nondominant eye is - 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!