This paper presents an ultra low-power integrated interface for capacitive and resistive MEMS and sensors, intended for use in biomedical applications. The interface encodes the sensed data in the time between transmitted UWB pulses: this reduces the number of transmitted bits and benefits the power consumption. The interface was designed and fabricated in the UMC 0.18μm CMOS process: the power consumption of the system was measured to be 1.04μW at a sample rate of 37Hz.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7318505DOI Listing

Publication Analysis

Top Keywords

power consumption
8
104µw wireless
4
wireless integrated
4
integrated mems
4
interface
4
mems interface
4
interface umc
4
umc 018µm
4
018µm cmos
4
cmos paper
4

Similar Publications

With the increasing intelligence and diversification of communication interference in recent years, communication interference resource scheduling has received more attention. However, the existing interference scenario models have been developed mostly for remote high-power interference with a fixed number of jamming devices without considering power constraints. In addition, there have been fewer scenario models for short-range distributed communication interference with a variable number of jamming devices and power constraints.

View Article and Find Full Text PDF

A fault tolerant CSA in QCA technology for IoT devices.

Sci Rep

January 2025

Department of Computer Engineering, Faculty of Engineering, Bu-Ali Sina University, Hamedan, Iran.

According to recent research, with the ever-increasing use of Internet of Things (IoT) devices, there has arisen an ever-growing need for high-performance yet low-power circuits that can efficiently process information. Quantum-dot Cellular Automata (QCA) has emerged as a promising alternative to conventional complementary metal-oxide-semiconductor (CMOS) technology due to its great potential in digital design at nanoscale levels on account of very low power consumption and very high processing speed. However, QCA circuits are inherently prone to faults due to variations in manufacturing processes and due to the influence of environmental factors.

View Article and Find Full Text PDF

The inadequate thermal insulation of the building envelope contributes significantly to the high power consumption of air conditioners in houses. A crucial factor in raising a building's energy efficiency involves utilizing bricks with high thermal resistance. This issue is accompanied by another critical challenge: recycling and disposing of waste in a way that is both economically and environmentally beneficial, including using it to fuel industrial growth, in order to reduce the harmful effects of waste on the environment as waste generation in our societies grows.

View Article and Find Full Text PDF

A solar-powered electrocoagulation process with a novel CNT/silver nanowire coated basalt fabric cathode for effective oil/water separation: From fundamentals to application.

J Environ Manage

January 2025

Xinjiang Key Laboratory of Separation Material and Technology, The Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, 830011, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China. Electronic address:

Electrocoagulation (EC) has proven its high efficiency and environmental sustainability for treating several types of wastewaters. However, the primary drawbacks of the conventional EC process are the suitable electrode materials and the relatively high cost due to the requirement for electric energy. To overcome these practical challenges, this study investigated effective oil/water separation by a solar-powered electrocoagulation (SPEC) process using a novel highly conductive basalt fabric (BF) cathode.

View Article and Find Full Text PDF

Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Recent literature has proposed memristors as a promising option for synaptic implementation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!