Public datasets played a key role in the increasing level of interest that vision-based human action recognition has attracted in last years. While the production of such datasets has been influenced by the variability introduced by various actors performing the actions, the different modalities of interactions with the environment introduced by the variation of the scenes around the actors has been scarcely took into account. As a consequence, public datasets do not provide a proper test-bed for recognition algorithms that aim at achieving high accuracy, irrespective of the environment where actions are performed. This is all the more so, when systems are designed to recognize activities of daily living (ADL), which are characterized by a high level of human-environment interaction. For that reason, we present in this manuscript the MEA dataset, a new multi-environment ADL dataset, which permitted us to show how the change of scenario can affect the performances of state-of-the-art approaches for action recognition.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7318470DOI Listing

Publication Analysis

Top Keywords

daily living
8
public datasets
8
action recognition
8
multi-environment dataset
4
dataset activity
4
activity daily
4
recognition
4
living recognition
4
recognition video
4
video streams
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!