Sleep spindle detection using modern signal processing techniques such as the Short-Time Fourier Transform and Wavelet Analysis are common research methods. These methods are computationally intensive, especially when analysing data from overnight sleep recordings. The authors of this paper propose an alternative using pre-designed IIR filters and a multivariate Gaussian Mixture Model. Features extracted with IIR filters are clustered using a Gaussian Mixture Model without the use of any subject independent thresholds. The Algorithm was tested on a database consisting of overnight sleep PSG of 5 subjects and an online public spindles database consisting of six 30 minute sleep excerpts. An overall sensitivity of 57% and a specificity of 98.24% was achieved in the overnight database group and a sensitivity of 65.19% at a 16.9% False Positive proportion for the 6 sleep excerpts.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7318436DOI Listing

Publication Analysis

Top Keywords

iir filters
12
gaussian mixture
12
mixture model
12
sleep spindle
8
spindle detection
8
overnight sleep
8
database consisting
8
sleep excerpts
8
sleep
5
automated sleep
4

Similar Publications

Hybrid filter for lock-in amplifiers.

Rev Sci Instrum

December 2024

Lake Shore Cryotronics, 575 McCorkle Blvd., Westerville, Ohio 43082, USA.

Lock-in amplifiers are instrumental in the precise measurement of extremely small AC signals within high-noise environments. Traditionally, noise reduction in these instruments relies on infinite impulse response (IIR) filters, which can necessitate prolonged settling times to ensure the acquisition of accurate, statistically independent data. While moving average filters offer faster settling times, their non-monotonic frequency response may not be optimal for noise reduction.

View Article and Find Full Text PDF

Cochlear implants (CI) allow deaf patients to improve language perception and improving their emotional valence assessment. Electroencephalographic (EEG) measures were employed so far to improve CI programming reliability and to evaluate listening effort in auditory tasks, which are particularly useful in conditions when subjective evaluations are scarcely appliable or reliable. Unfortunately, the presence of CI on the scalp introduces an electrical artifact coupled to EEG signals that masks physiological features recorded by electrodes close to the site of implant.

View Article and Find Full Text PDF

This study aimed to evaluate and design masks against viruses, especially SARS-CoV-2 associated with COVID-19. A continuum filtration model was developed where the rate of particle deposition and "sticking" on the filter fibers is a critical term in the mass transfer, together with permeation velocity, filter porosity, tortuosity, and Brownian diffusion. CFD simulations of the airflow during respiration lead to the recommendation that the filter permeability should be above 4 × 10 m to direct the airflow for effectiveness against virus particles; otherwise, low filter permeabilities cause the unfiltered air to flow preferentially through the leak gaps between the mask and the headform.

View Article and Find Full Text PDF

In a prior report (Raju et al., 2023) we concluded that, if the goal was to preserve events such as saccades, microsaccades, and smooth pursuit in eye-tracking recordings, data with sine wave frequencies less than 75 Hz were the signal and data above 75 Hz were noise. Here, we compare five filters in their ability to preserve signal and remove noise.

View Article and Find Full Text PDF

The Electrocardiogram (ECG) records are crucial for predicting heart diseases and evaluating patient's health conditions. ECG signals provide essential peak values that reflect reliable health information. Analyzing ECG signals is a fundamental technique for computerized prediction with advancements in Very Large-Scale Integration (VLSI) technology and significantly impacts in biomedical signal processing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!