Current forecasts imply a significant increase in the quantity of lower limb amputations. Synergizing the capabilities of a conventional gait analysis system and machine learning facilitates the capacity to classify disparate types of transtibial prostheses. Automated classification of prosthesis type may eventually advance rehabilitative acuity for selecting an appropriate prosthesis for a given aspect of the rehabilitation process. The presented research utilized a force plate as a conventional gait analysis device to acquire a feature set for two types of prosthesis: passive Solid Ankle Cushioned Heel (SACH) and the iWalk BiOM powered prosthesis. The feature set consists of both temporal and kinetic data with respect to the force plate signal during stance. Intuitively a passive prosthesis and powered prosthesis generate distinctively different force plate recordings. A support vector machine, which is type of machine learning application, achieves 100% classification between a passive prosthesis and powered prosthesis regarding the feature set derived from force plate recordings.

Download full-text PDF

Source
http://dx.doi.org/10.1109/EMBC.2015.7318335DOI Listing

Publication Analysis

Top Keywords

force plate
16
machine learning
12
conventional gait
12
gait analysis
12
feature set
12
powered prosthesis
12
prosthesis
9
prosthesis type
8
prosthesis feature
8
passive prosthesis
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!