Context 3β-Acetoxyurs-11-en-13β,28-olide (I), a triterpenoid, is found in most plant species. Pharmacologically triterpenes are very effective compounds with potent anticancer, anti-HIV and antimicrobial activities. Objectives Microbial transformation of 3β-acetoxyurs-11-en-13β,28-olide (I) was performed in order to obtain derivatives with improved pharmacological potential. Materials and methods Compound (I, 100 mg) was incubated with Aspergillus niger culture for 12 d. The metabolite formed was purified through column chromatography. Structure elucidation was performed through extensive spectroscopy (IR, MS and NMR). In vitro α- and β-glucosidase inhibitory, and antiglycation potentials of both substrate and metabolite were evaluated. Results Structure of metabolite II was characterized as 3β-acetoxyurs-11,12-epoxy-13β,28-olide (II). Metabolite II was found to be an oxidized product of compound I. In vitro α- and β-glucosidases revealed that metabolite II was a potent and selective inhibitor of α-glucosidase (IC50 value = 3.56 ± 0.38 μM), showing that the inhibitory effect of metabolite II was far better than compound I (IC50 value = 14.7 ± 1.3 μM) as well as acarbose (IC50 value = 545 ± 7.9 μM). Antiglycation potential of compound II was also high with 82.51 ± 1.2% inhibition. Thus, through oxidation, the biological potential of the substrate molecule can be enhanced. Conclusion Biotransformation can be used as a potential tool for the production of biologically potent molecules.

Download full-text PDF

Source
http://dx.doi.org/10.3109/13880209.2015.1127976DOI Listing

Publication Analysis

Top Keywords

aspergillus niger
8
niger culture
8
vitro α-
8
metabolite
6
production highly
4
potent
4
highly potent
4
potent epoxide
4
epoxide microbial
4
microbial metabolism
4

Similar Publications

Stability of lead immobilization by Aspergillus niger and fluorapatite under different pH conditions.

Ecotoxicol Environ Saf

January 2025

Anhui Province Engineering and Technology Research Center of Intelligent Manufacture and Efficient Utilization of Green Phosphorus Fertilizer, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Anhui Province Key Lab of Farmland Ecological Conservation and Pollution Prevention, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China; Key Laboratory of JiangHuai Arable Land Resources Protection and Eco-restoration, Ministry of Natural Resources, College of Resources and Environment, Anhui Agricultural University, Hefei 230036, PR China. Electronic address:

The combination of Aspergillus niger (A. niger) and fluorapatite (FAp) has been applied in lead (Pb) immobilization. However, the different pH can affect the stability of the immobilized Pb minerals.

View Article and Find Full Text PDF

A few Aspergillus section Nigri species are involved in the ochratoxin A (OTA) contamination in grapes worldwide, and its occurrence is determined by the agro-climatic conditions of each region. The aim of this study was to examine the diversity of black aspergilli isolated from grapes, soil, and air from vineyards with different agro-climatic conditions. A total of four vineyards located in Catalonia were studied.

View Article and Find Full Text PDF

Plants are frequently challenged by a variety of microorganisms. To protect themselves against harmful invaders, they have evolved highly effective defense mechanisms, including the synthesis of numerous types of antimicrobial peptides (AMPs). Snakins are such compounds, encoded by the (Gibberellic Acid-Stimulated Arabidopsis) gene family, and are involved in the response to biotic and abiotic stress.

View Article and Find Full Text PDF

This study aimed to enhance inulinase production from agricultural biomass pretreated with deep eutectic solvents (DES) using Aspergillus niger A42 (ATCC 204447). Barley husk (BH), wheat bran (WB), and oat husk (OH) were selected as substrates and were pretreated using different molar ratios of choline chloride: glycerol (ChCl: Gly) and choline chloride: acetic acid (ChCl: AA). DES pretreatment was followed by dilute sulfuric acid hydrolysis.

View Article and Find Full Text PDF

Antimicrobial Silicon Rubber Crosslinked with Bornyl-Siloxane.

Macromol Rapid Commun

January 2025

State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China.

Silicone rubber (SiR) has a wide range of medical applications, but it lacks antimicrobial properties, leading to potential infection issues with related implants or medical devices. Most studies focus on adding anti-bacterial agents or surface modification, which usually result in composites with anti-bacterial properties, rather than synthesizing SiR with intrinsically antimicrobial performances. To tackle this issue, a double substituted bornyl-siloxane crosslinker (BC) is designed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!