In mammalian cells, the Golgi complex is structured in the form of a continuous membranous system composed of stacks connected by tubular bridges: the "Golgi ribbon." At the onset of mitosis, the Golgi complex undergoes a multi-step fragmentation process that is required for its correct partition into the dividing cells. Importantly, inhibition of Golgi disassembly results in cell-cycle arrest at the G2 stage, which indicates that accurate inheritance of the Golgi complex is monitored by a "Golgi mitotic checkpoint." Moreover, mitotic Golgi disassembly correlates with the release of a set of Golgi-localized proteins that acquire specific functions during mitosis, such as mitotic spindle formation and regulation of the spindle checkpoint. Most of these events are regulated by small GTPases of the Arf and Rab families. Here, we review recent studies that are revealing the fundamental mechanisms, the molecular players, and the biological significance of mitotic inheritance of the Golgi complex in mammalian cells. We also briefly comment on how Golgi partitioning is coordinated with mitotic progression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4679863PMC
http://dx.doi.org/10.3389/fcell.2015.00079DOI Listing

Publication Analysis

Top Keywords

golgi complex
20
inheritance golgi
12
mitotic inheritance
8
golgi
8
complex mammalian
8
mammalian cells
8
golgi disassembly
8
mitotic
6
complex
5
mechanisms regulation
4

Similar Publications

Introduction: Cytomegalovirus (CMV) infection reorganizes early endosomes (EE), recycling endosome (RE), and trans-Golgi network (TGN) and expands their intermediates into a large perinuclear structure that forms the inner part of the cytoplasmic assembly complex (AC). The reorganization begins and results with the basic configuration (known as pre-AC) in the early (E) phase of infection, but the sequence of developmental steps is not yet well understood. One of the first signs of the establishment of the inner pre-AC, which can be observed by immunofluorescence, is the accumulation of Rab10.

View Article and Find Full Text PDF

Retromer mediates retrograde transport of protein cargos from endosomes to the trans-Golgi network (TGN). γ-secretase is a protease that cleaves the transmembrane domain of its target proteins. Although retromer can form a stable complex with γ-secretase, the functional consequences of this interaction are not known.

View Article and Find Full Text PDF

The ultrastructural organization of the nuclei of the tegmental region in juvenile chum salmon () was examined using transmission electron microscopy (TEM). The dorsal tegmental nuclei (DTN), the nucleus of (NFLM), and the nucleus of the oculomotor nerve (NIII) were studied. The ultrastructural examination provided detailed ultrastructural characteristics of neurons forming the tegmental nuclei and showed neuro-glial relationships in them.

View Article and Find Full Text PDF

The brain presents various structural and functional sex differences, for which multiple factors are attributed: genetic, epigenetic, metabolic, and hormonal. While biological sex is determined by both sex chromosomes and sex hormones, little is known about how these two factors interact to establish this dimorphism. Sex differences in the brain also affect its resident immune cells, microglia, which actively survey the brain parenchyma and interact with sex hormones throughout life.

View Article and Find Full Text PDF

Protein glycosylation plays a versatile role in regulating homeostasis, such as cell migration, protein sorting, and the immune response. Drugs aimed at targeting glycosylation have strong implications for immunity enhancement, diagnosis, and cancer regression. Programmed death-ligand 1 (PD-L1), expressed in cancer or antigen-presenting cells, binds to programmed cell death protein 1 (PD-1) and suppresses T cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!