Friedel-Crafts-type reaction of pyrene with diethyl 1-(isothiocyanato)alkylphosphonates promoted by trifluoromethanosulfonic acid afforded diethyl 1-(pyrene-1-carbothioamido)alkylphosphonates in 83-94% yield. These compounds were transformed, in 87-94% yield, into the corresponding diethyl 1-(pyrene-1-carboxamido)alkylphosphonates by treatment with Oxone(®). 1-(Pyrene-1-carboxamido)methylphosphonic acid was obtained in a 87% yield by treating the corresponding diethyl phosphonate with Me3Si-Br in methanol. All of the synthesized amidophosphonates were emissive in solution and in the solid state. The presence of a phosphonato group brought about an approximately two-fold increase in solution fluorescence quantum yield in comparison with that of a model N-alkyl pyrene-1-carboxamide. This effect was tentatively explained by stiffening of the amidophosphonate lateral chain which was caused by the interaction (intramolecular hydrogen bond) of phosphonate and amide groups. The synthesized phosphonic acid was soluble in a biological aqueous buffer (PBS, 0.01 M, pH 7.35) and was strongly emissive under these conditions (λem = 383, 400 nm, τ = 18.7 ns, ΦF > 0.98). Solid-state emission of diethyl 1-(pyrene-1-carboxamido)methylphosphonate (λmax = 485 nm; ΦF = 0.25) was assigned to π-π aggregates, the presence of which was revealed by single-crystal X-ray diffraction analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4685883 | PMC |
http://dx.doi.org/10.3762/bjoc.11.266 | DOI Listing |
Angew Chem Int Ed Engl
November 2024
State Key Laboratory of Applied Organic Chemistry (SKLAOC), Key Laboratory of Special Function Materials and Structure Design (MOE), College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, China.
Angew Chem Int Ed Engl
October 2024
Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Mansfield Road, Oxford, OX1 3TA, UK.
Sulfur functional groups are ubiquitous in molecules used in the pharmaceutical and agrochemical industries, and within these collections sulfones hold a prominent position. The double aza-analogues of sulfones, sulfondiimines, offer significant potential in discovery chemistry but to date their applications have been limited by the lack of convenient synthetic routes. The existing methods mainly rely on imination of low-valent-sulfur intermediates, or the combination of pre-formed organometallic reagents and electrophilic S(VI)-functionalities.
View Article and Find Full Text PDFJ Org Chem
November 2024
Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798-7348, United States.
Chlorosulfonyl isocyanate (CSI) is a complex reagent capable of facilitating numerous synthetic transformations, including lactam/lactone formation, sulfonylation, Friedel-Crafts-type acylations, and cycloadditions. Annulation reactions to form nitrogen-, oxygen-, and sulfur-bearing heterocycles have been observed with CSI; however, the application of CSI toward the generation of fused cyclic ketone ring systems has not been previously reported. A serendipitous discovery of the pertinence of CSI occurred during a structure-activity relationship campaign around our established lead benzosuberene-based molecule that functions as a potent inhibitor of tubulin polymerization.
View Article and Find Full Text PDFHeliyon
August 2024
Chemistry Division, School Of Advanced Science, VIT Chennai, Chennai, 600127, Tamil Nadu, India.
An efficient metal-free, triflic acid-promoted intramolecular Friedel-Crafts-type carbocyclization of alkenylated biphenyl derivatives is discussed. This method provides an elegant route for the construction of 9,10-dihydrophenanthrenes of biological significance in good to excellent yields. The carbocyclization reaction is likely to proceeds via activation of terminal C[bond, double bond]C bond of alkenylated biphenyl derivatives followed by subsequent aromatic electrophilic substitution to give desired carbocyclic products.
View Article and Find Full Text PDFJ Org Chem
August 2024
Department of Chemistry, Indian Institute of Technology, Kanpur 208016, India.
A transition metal-free, atom-economical, and highly stereospecific synthetic approach to Friedel-Crafts-type alkylation of arenes/heteroarenes has been developed. The protocol involves the catalytic aminium radical-cation salt (Magic Blue)-initiated S2-type nucleophilic ring opening of activated aziridines with arenes/heteroarenes to give the corresponding 2,2-diarylethylamines up to 99% yield and 85% ee (for nonracemic aziridines) in a very short reaction time. Moreover, on reaction with 1,3-dimethylindole and benzofuran, aziridines undergo domino-ring-opening cyclization (DROC) to give the various biologically significant heterocyclic scaffolds in moderate to good yields.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!