We previously reported that long-term administration of a low dose of gastrin and epidermal growth factor (GE) augments β-cell neogenesis in late-stage diabetic autoimmune mice after eliminating insulitis by induction of mixed chimerism. However, the source of β-cell neogenesis is still unknown. SRY (sex-determining region Y)-box 9(+) (Sox9(+)) ductal cells in the adult pancreas are clonogenic and can give rise to insulin-producing β cells in an in vitro culture. Whether Sox9(+) ductal cells in the adult pancreas can give rise to β cells in vivo remains controversial. Here, using lineage-tracing with genetic labeling of Insulin- or Sox9-expressing cells, we show that hyperglycemia (>300 mg/dL) is required for inducing Sox9(+) ductal cell differentiation into insulin-producing β cells, and medium hyperglycemia (300-450 mg/dL) in combination with long-term administration of low-dose GE synergistically augments differentiation and is associated with normalization of blood glucose in nonautoimmune diabetic C57BL/6 mice. Short-term administration of high-dose GE cannot augment differentiation, although it can augment preexisting β-cell replication. These results indicate that medium hyperglycemia combined with long-term administration of low-dose GE represents one way to induce Sox9(+) ductal cell differentiation into β cells in adult mice.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4725504PMC
http://dx.doi.org/10.1073/pnas.1524200113DOI Listing

Publication Analysis

Top Keywords

sox9+ ductal
20
medium hyperglycemia
12
ductal cell
12
cell differentiation
12
long-term administration
12
cells adult
12
induce sox9+
8
cells
8
differentiation cells
8
β-cell neogenesis
8

Similar Publications

Sox17 is a key transcriptional regulator of endoderm formation and function in the gallbladder, blood vessels and reproductive organs. Although multiple transcript variants of Sox17 have been suggested, the precise mechanisms underlying their time- and tissue-specific expression remain unclear. In this study, we discovered two putative regulatory sequences (R1 and R2) adjacent to different transcription start sites of mouse Sox17 exon 1 and generated deletion mice for these regions (Sox17).

View Article and Find Full Text PDF

Background: Induced pluripotent stem cells (iPSCs) offer the potential to generate autologous iPSC-derived islets (iPSC islets), however, remain limited by scalability and product safety.

Methods: Herein, we report stagewise characterization of cells generated following a bioreactor-based differentiation protocol. Cell characteristics were assessed using flow cytometry, quantitative reverse transcription polymerase chain reaction, patch clamping, functional assessment, and in vivo functional and immunohistochemistry evaluation.

View Article and Find Full Text PDF

Breast cancer is a leading cause of female mortality and despite advancements in personalized therapeutics, metastatic disease largely remains incurable due to drug resistance. The estrogen receptor (ER, ESR1) is expressed in two-thirds of all breast cancer, and under endocrine stress, somatic ESR1 mutations arise in approximately 30% of cases that result in endocrine resistance. We and others reported ESR1 fusions as a mechanism of ER-mediated endocrine resistance.

View Article and Find Full Text PDF

The mechanism of hypoxia in chemoresistance of pancreatic ductal adenocarcinoma (PDAC) remains elusive. In this study, we revealed the essential role of miR-485-3p in PDAC, particularly its impact on cancer stemness and gemcitabine resistance under hypoxic conditions. We found substantial downregulation of miR-485-3p in PDAC tissues, with lower expression correlating to poor patient outcomes.

View Article and Find Full Text PDF

Diverse functions of SOX9 in liver development and homeostasis and hepatobiliary diseases.

Genes Dis

July 2024

School of Life Sciences, Institute of Metabolism and Integrative Biology, Fudan University, Shanghai 200438, China.

The liver is the central organ for digestion and detoxification and has unique metabolic and regenerative capacities. The hepatobiliary system originates from the foregut endoderm, in which cells undergo multiple events of cell proliferation, migration, and differentiation to form the liver parenchyma and ductal system under the hierarchical regulation of transcription factors. Studies on liver development and diseases have revealed that SRY-related high-mobility group box 9 (SOX9) plays an important role in liver embryogenesis and the progression of hepatobiliary diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!