Background: The key pathophysiology of human acquired heart failure is impaired calcium transient, which is initiated at dyads consisting of ryanodine receptors (RyRs) at sarcoplasmic reticulum apposing CaV1.2 channels at t-tubules. Sympathetic tone regulates myocardial calcium transients through β-adrenergic receptor (β-AR)-mediated phosphorylation of dyadic proteins. Phosphorylated RyRs (P-RyR) have increased calcium sensitivity and open probability, amplifying calcium transient at a cost of receptor instability. Given that bridging integrator 1 (BIN1) organizes t-tubule microfolds and facilitates CaV1.2 delivery, we explored whether β-AR-regulated RyRs are also affected by BIN1.
Methods And Results: Isolated adult mouse hearts or cardiomyocytes were perfused for 5 minutes with the β-AR agonist isoproterenol (1 µmol/L) or the blockers CGP+ICI (baseline). Using biochemistry and superresolution fluorescent imaging, we identified that BIN1 clusters P-RyR and CaV1.2. Acute β-AR activation increases coimmunoprecipitation between P-RyR and cardiac spliced BIN1+13+17 (with exons 13 and 17). Isoproterenol redistributes BIN1 to t-tubules, recruiting P-RyRs and improving the calcium transient. In cardiac-specific Bin1 heterozygote mice, isoproterenol fails to concentrate BIN1 to t-tubules, impairing P-RyR recruitment. The resultant accumulation of uncoupled P-RyRs increases the incidence of spontaneous calcium release. In human hearts with end-stage ischemic cardiomyopathy, we find that BIN1 is also 50% reduced, with diminished P-RyR association with BIN1.
Conclusions: On β-AR activation, reorganization of BIN1-induced microdomains recruits P-RyR into dyads, increasing the calcium transient while preserving electric stability. When BIN1 is reduced as in human acquired heart failure, acute stress impairs microdomain formation, limiting contractility and promoting arrhythmias.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4729615 | PMC |
http://dx.doi.org/10.1161/CIRCULATIONAHA.115.018535 | DOI Listing |
Eur J Pharmacol
December 2024
Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan. Electronic address:
Bioorg Chem
December 2024
Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang 110840, People's Republic of China. Electronic address:
Transient Receptor Potential Ankyrin 1 (TRPA1) is a non-selective cation channel involved in detecting harmful stimuli and endogenous ligands, primarily expressed in sensory neurons. Due to its role in pain and itch, TRPA1 is a potential drug target. We identified an oxindole core structure via high-throughput screening, modified it, and tested the modified compounds in vitro and in vivo.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Department of Chemical and Biomolecular Engineering, Case School of Engineering, Case Western Reserve University, Cleveland, OH 44106, United States.
We present a study combining experimental measurements, theoretical analysis, and simulations to investigate core-shell microcapsules interacting with a solid boundary, with a particular focus on understanding the short-range potential energy well arising from the tethered force. The microcapsules, fabricated using a Pickering emulsion template with a cinnamon oil core and calcium alginate shell, were characterized for size (∼5-6μm in diameter) and surface charge (∼-20mV). We employed total internal reflection microscopy and particle tracking to measure the microcapsule-boundary interactions and diffusion, from which potential energy and diffusivity profiles were derived.
View Article and Find Full Text PDFACS Chem Neurosci
December 2024
Department of Anesthesiology and Perioperative Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.
Co-use of xylazine with opioids is a major health threat in the United States. However, a critical knowledge gap exists in the understanding of xylazine-induced pharmacological and pathological impact. Xylazine is mostly known as an agonist of α2-adrenergic receptors (α2-ARs), but its deleterious effects on humans cannot be fully reversed by the α2-AR antagonists, suggesting the possibility that xylazine targets receptors other than α2-ARs.
View Article and Find Full Text PDFBackground: Aortic valve stenosis (AVS) is a progressive disease characterized by fibrosis, inflammation, calcification, and stiffening of the aortic valve leaflets, leading to disrupted blood flow. If untreated, AVS can progress to heart failure and death within 2 to 5 years. Uncovering the molecular mechanisms behind AVS is key for developing effective noninvasive therapies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!