Insertion of the gene encoding phosphinothricin acetyltransferase (PAT) has resulted in cotton plants resistant to the herbicide glufosinate. However, the lower expression and commensurate reduction in PAT activity is a key factor in the low level of injury observed in the WideStrike(®) cotton and relatively high level of resistance observed in LibertyLink(®) cotton. LibertyLink(®) cotton cultivars are engineered for glufosinate resistance by overexpressing the bar gene that encodes phosphinothricin acetyltransferase (PAT), whereas the insect-resistant WideStrike(®) cultivars were obtained using the similar pat gene as a selectable marker. The latter cultivars carry some level of resistance to glufosinate which enticed certain farmers to select this herbicide for weed control with WideStrike(®) cotton. The potency of glufosinate on conventional FM 993, insect-resistant FM 975WS, and glufosinate-resistant IMACD 6001LL cotton cultivars was evaluated and contrasted to the relative levels of PAT expression and activity. Conventional cotton was sensitive to glufosinate. The single copy of the pat gene present in the insect-resistant cultivar resulted in very low RNA expression of the gene and undetectable PAT activity in in vitro assays. Nonetheless, the presence of this gene provided a good level of resistance to glufosinate in terms of visual injury and effect on photosynthetic electron transport. The injury is proportional to the amount of ammonia accumulation. The strong promoter associated with bar expression in the glufosinate-resistant cultivar led to high RNA expression levels and PAT activity which protected this cultivar from glufosinate injury. While the insect-resistant cultivar demonstrated a good level of resistance to glufosinate, its safety margin is lower than that of the glufosinate-resistant cultivar. Therefore, farmers should be extremely careful in using glufosinate on cultivars not expressly designed and commercialized as resistant to this herbicide.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4819749 | PMC |
http://dx.doi.org/10.1007/s00425-015-2457-3 | DOI Listing |
Pestic Biochem Physiol
December 2024
State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China. Electronic address:
The herbicides glyphosate and glufosinate are commonly used in citrus and sugarcane orchards in Guangxi Province, China, wherein the C plant Eleusine indica (L.) Gaertn. is known to be a dominant weed species.
View Article and Find Full Text PDFEnviron Microbiol
December 2024
Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
The canonical arsRBC genes of the ars1 operon in Pseudomonas putida KT2440, which confer tolerance to arsenate and arsenite, are followed by a series of additional ORFs culminating in phoN1. The phoN1 gene encodes an acetyltransferase that imparts resistance to the glutamine synthetase inhibitor herbicide phosphinothricin (PPT). The co-expression of phoN1 and ars genes in response to environmental arsenic, along with the physiological effects, was analysed through transcriptomics of cells exposed to the oxyanion and phenotypic characterization of P.
View Article and Find Full Text PDFACS Nano
November 2024
Department of Applied Chemistry, College of Science, China Agricultural University, Beijing 100193, China.
Current crop stress resistance research suggests that the prominent stimulants nanoselenium (NSe) and melatonin (MT) might improve tea safety, quality, and stress resistance induced by the widely used nonselective herbicide glufosinate (GLU). Their biofortification effects on tea growth, antioxidant activity, and secondary metabolism pathways response to GLU remain unclear. Here, NSe, MT, and their combination NSe-MT effectively reduced 26.
View Article and Find Full Text PDFPlant Physiol
December 2024
Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
The GLR2 transcription factor regulates glufosinate resistance and enhances abiotic stress tolerance in rice through interaction with the GLR1 transcription factor and modulation of gene expression.
View Article and Find Full Text PDFFront Plant Sci
October 2024
State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China.
Crop resistance to herbicides is crucial for agricultural productivity and sustainability amidst escalating challenges of weed resistance. Uncovering herbicide resistant genes is particularly important for rice production. In this study, we tested the resistance to three commonly used herbicides: glufosinate, glyphosate and mesotrione of 421 diverse rice cultivars and employed genome-wide association studies (GWAS) to unravel the genetic underpinnings of resistance to these three herbicides in rice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!