The aim of this work was to evaluate the flocculation by the dinoflagellate Heterocapsa circularisquama as a means for harvesting three Chlorophyta species, Chlorella vulgaris, Nannochloropsis granulata, and Dunaliella salina. Relative fluorescence of D. salina culture significantly decreased along with 9.3-fold increased flocculation activity within 24 h when mixed with H. circularisquama. Lipid content of bioflocculated D. salina increased about 40%, while fatty acid methyl ester (FAME) profiles exhibited higher levels of C16:0, C18:0, and C18:1, compared to harvest by centrifugation, suggesting higher energy content. Furthermore, bioflocculated D. salina biomass had more suitable biodiesel properties relative to both EN14214 and ASTMD6751, with a cetane number of 49.0 and an iodine value of 95.9. These results suggest that H. circularisquama-induced bioflocculation is applicable for the sustainable and qualitative production of algal biodiesel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2015.12.047DOI Listing

Publication Analysis

Top Keywords

dunaliella salina
8
dinoflagellate heterocapsa
8
heterocapsa circularisquama
8
biodiesel properties
8
content bioflocculated
8
bioflocculated salina
8
salina
5
bioflocculation oceanic
4
oceanic microalga
4
microalga dunaliella
4

Similar Publications

An efficient co-culture of and for phenol degradation under high salt conditions.

Front Microbiol

December 2024

CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.

Phenol is one of the major organic pollutants in high salt industrial wastewater. The biological treatment method is considered to be a cost-effective and eco-friendly method, in which the co-culture of microalgae and bacteria shows a number of advantages. In the previous study, a co-culture system featuring () and () was established and could degrade 400 mg L phenol at 3% NaCl concentration.

View Article and Find Full Text PDF

Biodegradation of microplastics (MPs) through microalgal strains would be of eco-friendly approach for significant pollution abatement. Polystyrene (PS) is a major contaminant in the marine environment; however studies on marine microalgal degradation of PS MPs have been very limited. In the present study, six marine microalgal strains viz.

View Article and Find Full Text PDF

Iron (Fe) availability limits photosynthesis at a global scale where Fe-rich photosystem (PS) I abundance is drastically reduced in Fe-poor environments. We used single-particle cryo-electron microscopy to reveal a unique Fe starvation-dependent arrangement of light-harvesting chlorophyll (LHC) proteins where Fe starvation-induced TIDI1 is found in an additional tetramer of LHC proteins associated with PSI in and . These cosmopolitan green algae are resilient to poor Fe nutrition.

View Article and Find Full Text PDF

Purpose: is a halophilic genus of microalgae with high potential in the global food market. The microalgal cultivation process contributes to not only economic impact but also environmental impact, especially regarding the artificial medium composition. In this context, a life cycle assessment was carried out to analyze the impacts associated with the components of the modified Johnson medium (MJM) and to predict the best scenarios to cultivate and for biomass, glycerol, and beta-carotene production.

View Article and Find Full Text PDF

The vast, untapped potential of the world's oceans is revealing groundbreaking advancements in human health and vaccination. Microalgae such as spp. and are emerging as resources for recombinant vaccine development with specific and heterologous genetic tools used to boost production of functional recombinant antigens in and spp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!