Chemical analyses of water samples from 19 hot and cold springs are used to characterize Takab geothermal field, west of Iran. The springs are divided into two main groups based on temperature, host rock, total dissolved solids (TDS), and major and minor elements. TDS, electrical conductivity (EC), Cl(-), and SO4 (2-) concentrations of hot springs are all higher than in cold springs. Higher TDS in hot springs probably reflect longer circulation and residence time. The high Si, B, and Sr contents in thermal waters are probably the result of extended water-rock interaction and reflect flow paths and residence time. Binary, ternary, and Giggenbach diagrams were used to understand the deeper mixing conditions and locations of springs in the model system. It is believed that the springs are heated either by mixing of deep geothermal fluid with cold groundwater or low conductive heat flow. Mixing ratios are evaluated using Cl, Na, and B concentrations and a mass balance approach. Calculated quartz and chalcedony geothermometer give lower reservoir temperatures than cation geothermometers. The silica-enthalpy mixing model predicts a subsurface reservoir temperature between 62 and 90 °C. The δ(18)O and δD (δ(2)H) are used to trace and determine the origin and movement of water. Both hot and cold waters plot close to the local meteoric line, indicating local meteoric origin.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-015-5037-xDOI Listing

Publication Analysis

Top Keywords

springs
8
takab geothermal
8
geothermal field
8
field west
8
hot cold
8
cold springs
8
hot springs
8
springs higher
8
residence time
8
local meteoric
8

Similar Publications

On October 11, 2018, in the Ulytau region of the Republic of Kazakhstan, the Soyuz-FG launch vehicle carrying a crewed MS-10 spacecraft failed. It resulted in the release into the fragile arid ecosystems of rocket propellants, i.e.

View Article and Find Full Text PDF

Dysentery caused by Shigella species remains a major health threat to children in low- and middle-income countries. There is no vaccine available. The most advanced candidates, i.

View Article and Find Full Text PDF

Biocompatible autonomous self-healing PVA-CS/TA hydrogels based on hydrogen bonding and electrostatic interaction.

Sci Rep

January 2025

State Key Laboratory of Structure Analysis, Optimization and CAE Software for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian, 116024, China.

The biocompatible autonomous self-healing hydrogels have great potential in biomedical applications. However, the fairly weak tensile strength of the hydrogels seriously hinders their application. Here, we introduced chitosan (CS) into the polyvinyl alcohol (PVA)-tannic acid (TA) hydrogel and investigated the effects of the CS content, as CS can not only form reversible H bonds with PVA and TA but also form reversible electrostatic interactions with TA.

View Article and Find Full Text PDF

Drug-drug interactions (DDIs) represent a significant concern for clinical care and public health, but the health consequences of many DDIs remain largely underexplored. This knowledge gap underscores the critical need for pharmacoepidemiologic research to evaluate real-world health outcomes of DDIs. In this review, we summarize the definitions commonly used in pharmacoepidemiologic DDI studies, discuss common sources of bias, and illustrate through examples how these biases can be mitigated.

View Article and Find Full Text PDF

Purpose: To characterize select laboratory tests ordered versus reported for patients diagnosed with COVID-19 in administrative healthcare and commercial laboratory data.

Methods: Among patients with an outpatient COVID-19 diagnosis claim in HealthVerity data (01/01/2021-12/31/2022), this study described baseline characteristics and descriptively compared SARS-CoV-2 diagnostic tests and liver function tests from administrative healthcare (insurance claims and hospital billing data) and commercial laboratories, overall and by code type (e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!