The pseudorabies virus DNA polymerase processivity factor UL42 exists as a monomer in vitro and in vivo.

Arch Virol

Division of Swine Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 427 Maduan Street, Nangang District, Harbin, 150001, People's Republic of China.

Published: April 2016

The processivity factors (PFs) of herpesviruses confer processivity to the DNA polymerase. Understanding whether the herpesvirus PFs function as monomers or multimers is important for clarifying the mechanism by which they provide the DNA polymerase with processivity. Herpes simplex virus type 1 UL42 is a monomer, whereas human cytomegalovirus UL44, Epstein-Barr virus BMRF1, and Kaposi's sarcoma-associated herpesvirus PF-8 exist as dimers. However, the oligomeric status of the pseudorabies virus (PRV) DNA polymerase PF UL42 has not been determined. Using fluorescence confocal microscopy and chemical crosslinking, we confirmed that UL42 is a monomer when expressed in vitro. Crosslinking of nuclear extracts from PRV-infected or uninfected PK-15 cells verified that UL42 exists as a monomer in vivo. Our demonstration that UL42 exists as a monomer in vitro and in vivo contributes to the further investigation of the mechanism used by UL42 to achieve processivity.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00705-015-2735-1DOI Listing

Publication Analysis

Top Keywords

dna polymerase
16
ul42 exists
12
exists monomer
12
pseudorabies virus
8
polymerase processivity
8
monomer vitro
8
vitro vivo
8
ul42 monomer
8
ul42
7
processivity
5

Similar Publications

Technological advances in clinical individualized medication for cancer therapy: from genes to whole organism.

Per Med

January 2025

Department of Clinical Pharmacy, Zhejiang Provincial Key Laboratory for Drug Evaluation and Clinical Research, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.

Efforts have been made to leverage technology to accurately identify tumor characteristics and predict how each cancer patient may respond to medications. This involves collecting data from various sources such as genomic data, histological information, functional drug profiling, and drug metabolism using techniques like polymerase chain reaction, sanger sequencing, next-generation sequencing, fluorescence in situ hybridization, immunohistochemistry staining, patient-derived tumor xenograft models, patient-derived organoid models, and therapeutic drug monitoring. The utilization of diverse detection technologies in clinical practice has made "individualized treatment" possible, but the desired level of accuracy has not been fully attained yet.

View Article and Find Full Text PDF

Background: Microsatellite instability-high (MSI-high) tumors comprise ~15% of sporadic colorectal cancers (CRC) and are associated with elevated T cell infiltration. However, the universality of this response across T cell subtypes with distinct functions is unknown.

Methods: Including 1,236 CRC tumors from three observational studies, we conducted T cell profiling using a customized 9-plex (CD3, CD4, CD8, CD45RA, CD45RO, FOXP3, KRT, MKI67, and DAPI) multispectral immunofluorescence assay.

View Article and Find Full Text PDF

Background: Variants in the mitochondrial genome (mtDNA) cause a diverse collection of mitochondrial diseases and have extensive phenotypic overlap with Mendelian diseases encoded on the nuclear genome. The mtDNA is often not specifically evaluated in patients with suspected Mendelian disease, resulting in overlooked diagnostic variants.

Methods: Using dedicated pipelines to address the technical challenges posed by the mtDNA - circular genome, variant heteroplasmy, and nuclear misalignment - single nucleotide variants, small indels, and large mtDNA deletions were called from exome and genome sequencing data, in addition to RNA-sequencing when available.

View Article and Find Full Text PDF

Biological polyamines, such as spermine, spermidine, and putrescine, are abundant intracellular compounds mostly bound to nucleic acids. Due to their nucleophilic nature, polyamines easily react with apurinic/apyrimidinic (AP) sites, DNA lesions that are constantly formed in DNA by spontaneous base loss and as intermediates of base excision repair. A covalent intermediate is formed, promoting DNA strand cleavage at the AP site, and is later hydrolyzed regenerating the polyamine.

View Article and Find Full Text PDF

Background: Neural tube defects (NTDs) are defined as an incomplete closure of the neural tube (NT), with a prevalence of 1.2 per 1000 live births around the world. Methylation of the maternally imprinted gene Insulin-like growth factor 2 (IGF2) is one of the epigenetic mechanisms that contribute significantly to the development of NTDs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!