HIV-1 depends on host-cell-encoded factors to complete its life cycle. A comprehensive understanding of how HIV-1 manipulates host machineries during viral infection can facilitate the identification of host targets for antiviral drugs or gene therapy. The cellular protein Naf1 (HIV-1 Nef-associated factor 1) is a CRM1-dependent nucleo-cytoplasmic shuttling protein, and has been identified to regulate multiple receptor-mediated signal pathways in inflammation. The cytoplasm-located Naf1 can inhibit NF-κB activation through binding to A20, and the loss of Naf1 controlled NF-κB activation is associated with multiple autoimmune diseases. However, the effect of Naf1 on HIV-1 mRNA expression has not been characterized. In this study we found that the nucleus-located Naf1 could promote nuclear export of unspliced HIV-1 gag mRNA. We demonstrated that the association between Naf1 and CRM1 was required for this function as the inhibition or knockdown of CRM1 expression significantly impaired Naf1-promoted HIV-1 production. The mutation of Naf1 nuclear export signals (NESs) that account for CRM1 recruitment for nuclear export decreased Naf1 function. Additionally, the mutation of the nuclear localization signal (NLS) of Naf1 diminished its ability to promote HIV-1 production, demonstrating that the shuttling property of Naf1 is required for this function. Our results reveal a novel role of Naf1 in enhancing HIV-1 production, and provide a potential therapeutic target for controlling HIV-1 infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4813482PMC
http://dx.doi.org/10.1074/jbc.M115.706135DOI Listing

Publication Analysis

Top Keywords

nuclear export
16
hiv-1 production
12
hiv-1
11
naf1
11
hiv-1 nef-associated
8
nef-associated factor
8
promote nuclear
8
export unspliced
8
unspliced hiv-1
8
hiv-1 gag
8

Similar Publications

CASK, a MAGUK family scaffold protein, regulates gene expression as a transcription co-activator in neurons. However, the mechanism of CASK nucleus translocation and the regulatory function of CASK in myeloid cells remains unclear. Here, we investigated its role in H5N1-infected macrophages.

View Article and Find Full Text PDF

The N17 domain of huntingtin as a multifaceted player in Huntington's disease.

Front Mol Biosci

January 2025

Center for Biomolecular and Cellular Structure, Institute for Basic Science, Daejeon, Republic of Korea.

Huntington's disease (HD) is primarily caused by the aberrant aggregation of the N-terminal exon 1 fragment of mutant huntingtin protein (mHttex1) with expanded polyglutamine (polyQ) repeats in neurons. The first 17 amino acids of the N-terminus of Httex1 (N17 domain) immediately preceding the polyQ repeat domain are evolutionarily conserved across vertebrates and play multifaceted roles in the pathogenesis of HD. Due to its amphipathic helical properties, the N17 domain, both alone and when membrane-associated, promotes mHttEx1 aggregation.

View Article and Find Full Text PDF

Nuclear transport protein suppresses Tau neurodegeneration.

Adv Protein Chem Struct Biol

January 2025

Neural Development Biology Lab, Department of Life Science, NIT Rourkela, Rourkela, Odisha, India.

The nuclear pore complex, a large multimeric structure consists of numerous protein components, serves as a crucial gatekeeper for the transport of macromolecules across the nuclear envelope in eukaryotic cells. Dysfunction of the NPC has been implicated in various neurodegenerative diseases, including Alzheimer's disease. In AD, Tau aggregates interact with NPC proteins, known as nucleoporins, leading to disruptions in nuclear transport.

View Article and Find Full Text PDF

Nuclear Tau accumulation in Alzheimer's disease.

Adv Protein Chem Struct Biol

January 2025

Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences Hospital (NIMHANS), Institute of National Importance, Bangalore, Karnataka, India.

Tau is a well-known microtubule-associated protein and is located in the cytoplasm of neurons, which play a crucial role in Alzheimer's diseases. Due to its preferred binding to DNA sequences found in the nucleolus and pericentromeric heterochromatin, Tau has been found within the cell nucleus, where it may be a nucleic acid-associated protein. Tau has the ability to directly interact with nuclear pore complex nucleoporins, influencing both their structural and functional integrity.

View Article and Find Full Text PDF

Role of lamins in cellular physiology and cancer.

Adv Protein Chem Struct Biol

January 2025

Department of Medical Oncology (Lab), Dr. B.R. Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India. Electronic address:

Lamins, which are crucial type V intermediate filament proteins found in the nuclear lamina, are essential for maintaining the stability and function of the nucleus in higher vertebrates. They are classified into A- and B-types, and their distinct expression patterns contribute to cellular survival, development, and functionality. Lamins emerged during the transition from open to closed mitosis, with their complexity increasing alongside organism evolution.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!