Increased IGFBP-1 phosphorylation in response to leucine deprivation is mediated by CK2 and PKC.

Mol Cell Endocrinol

Dept of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada; Children's Health Research Institute, University of Western Ontario, London, ON, Canada; Dept of Pediatrics, University of Western Ontario, London, Canada. Electronic address:

Published: April 2016

Insulin-like growth factor binding protein-1 (IGFBP-1), secreted by fetal liver, is a key regulator of IGF-I bioavailability and fetal growth. IGFBP-1 phosphorylation decreases IGF-I bioavailability and diminishes its growth-promoting effects. Growth-restricted fetuses have decreased levels of circulating essential amino acids. We recently showed that IGFBP-1 hyperphosphorylation (pSer101/119/169) in response to leucine deprivation is regulated via activation of the amino acid response (AAR) in HepG2 cells. Here we investigated nutrient-sensitive protein kinases CK2/PKC/PKA in mediating IGFBP-1 phosphorylation in leucine deprivation. We demonstrated that leucine deprivation stimulated CK2 activity (enzymatic assay) and induced IGFBP-1 phosphorylation (immunoblotting/MRM-MS). Inhibition (pharmacological/siRNA) of CK2/PKC, but not PKA, prevented IGFBP-1 hyperphosphorylation in leucine deprivation. PKC inhibition also prevented leucine deprivation-stimulated CK2 activity. Functionally, leucine deprivation decreased IGF-I-induced-IGF-1R autophosphorylation when CK2/PKC were not inhibited. Our data strongly support that PKC promotes leucine deprivation-induced IGFBP-1 hyperphosphorylation via CK2 activation, mechanistically linking decreased amino acid availability and reduced fetal growth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4811673PMC
http://dx.doi.org/10.1016/j.mce.2015.12.006DOI Listing

Publication Analysis

Top Keywords

leucine deprivation
24
igfbp-1 phosphorylation
16
igfbp-1 hyperphosphorylation
12
leucine
8
response leucine
8
igf-i bioavailability
8
fetal growth
8
amino acid
8
ck2 activity
8
igfbp-1
7

Similar Publications

Cancer cells rely on invasive growth to survive in a hostile microenvironment; this growth is characterised by interconnected processes such as epithelial-to-mesenchymal transition and migration. A master regulator of these events is the MET oncogene, which is overexpressed in the majority of cancers; however, since mutations in the MET oncogene are seen only rarely in cancers and are relatively infrequent, the mechanisms that cause this widespread MET overexpression remain obscure. Here, we show that the 5' untranslated region (5'UTR) of MET mRNA harbours two functional stress-responsive elements, conferring translational regulation by the integrated stress response (ISR), regulated by phosphorylation of eukaryotic translation initiation factor 2 alpha (eIF2α) at serine 52.

View Article and Find Full Text PDF

The ATAC complex represses the transcriptional program of the autophagy-lysosome pathway via its E3 ubiquitin ligase activity.

Cell Rep

December 2024

Key Laboratory of Breast Cancer Prevention and Therapy (Ministry of Education), The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China. Electronic address:

The Ada two A-containing (ATAC) complex, containing histone acetyltransferases general control non-derepressible 5 (GCN5) or p300/CBP-associated factor (PCAF), has gained recognition as a prominent transcriptional coactivator. Recent revelations unveiled E3 ligase activity present in both GCN5 and PCAF; however, how the dual enzymatic activities of the ATAC complex orchestrate distinct transcriptional programs and signaling networks remains largely elusive. Our study unveils the function of the ATAC complex as a negative regulator of the autophagy-lysosome pathway's transcriptional program by modulating the stability of transcription factors TFE3 and TFEB.

View Article and Find Full Text PDF

Messenger RNA (mRNA) translation is a tightly controlled process frequently deregulated in cancer. Key to this deregulation are transfer RNAs (tRNAs), whose expression, processing and post-transcriptional modifications are often altered in cancer to support cellular transformation. In conditions of limiting levels of amino acids, this deregulated control of protein synthesis leads to aberrant protein production in the form of ribosomal frameshifting or misincorporation of non-cognate amino acids.

View Article and Find Full Text PDF

Remyelination protects neurons from DLK-mediated neurodegeneration.

Nat Commun

October 2024

Department of Neurology, Jungers Center for Neurosciences Research, Oregon Health & Science University, Portland, OR, 97239, USA.

Article Synopsis
  • Chronic demyelination and loss of oligodendrocytes result in neuronal support deprivation, leading to neurodegeneration and progressive disability in demyelinating diseases.
  • In a study of two genetically modified mouse models—one with effective remyelination and the other with remyelination failure—it was found that lack of remyelination is linked to increased neuronal apoptosis and changes in microglial inflammation.
  • The research suggests that enhancing remyelination may offer neuroprotection, with dual leucine zipper kinase (DLK) identified as a potential target for preventing neuron death in chronically demyelinated conditions.
View Article and Find Full Text PDF

USP7 protects TFEB from proteasome-mediated degradation.

Cell Rep

November 2024

Cambridge Institute for Medical Research, University of Cambridge, CB2 0XY Cambridge, UK; UK Dementia Research Institute, Cambridge Biomedical Campus, Cambridge, UK. Electronic address:

The transcription factor EB (TFEB) is a master regulator of lysosomal biogenesis and autophagy. We identify a distinct nuclear interactome of TFEB, with ubiquitin-specific protease 7 (USP7) emerging as a key post-translational modulator of TFEB. Genetic depletion and inhibition of USP7 reveal its critical role in preserving TFEB stability within both nuclear and cytoplasmic compartments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!