Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The molecular chaperone heat shock protein A2 (HSPA2), a member of the 70 kDa heat shock protein (HSP70) family, plays an important role in spermatogenesis and male fertility. Although HSPA2 is evolutionarily highly conserved across the metazoan lineages, the observation of striking differences in temperature-sensitive expressions, testicular physiology, spermatogenesis, as well as its role in male fertility indicates that avian and mammalian HSPA2 may exhibit distinct evolutionary trajectory. The present study reports that while mammalian HSPA2 is constrained by intense purifying selection, avian HSPA2 has been subjected to positive selection. The majority of the positively selected amino acid residues fall on the α-helix and β-sheets of the peptide-binding domain located at the carboxyl-terminal region of the avian HSPA2. The detection of positively selected sites at the helix and β-sheets, which are less tolerant to molecular adaptation, indicates an important functional consequence and contribution to the structural and functional diversification of the avian HSPA2. Collectively, avian HSPA2 may have an adaptive advantage over the mammals in response to heat stress, and therefore, mammals with testicular descent may be at a greater risk in the event of scrotal temperature rise.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4702119 | PMC |
http://dx.doi.org/10.1038/srep18770 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!